Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Engineering / Biomedizinische Technik

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering and the German Society of Biomaterials

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Habibović, Pamela / Haueisen, Jens / Jahnen-Dechent, Wilhelm / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Lenarz, Thomas / Leonhardt, Steffen / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Boenick, Ulrich / Jaramaz, Branislav / Kraft, Marc / Lenthe, Harry / Lo, Benny / Mainardi, Luca / Micera, Silvestro / Penzel, Thomas / Robitzki, Andrea A. / Schaeffter, Tobias / Snedeker, Jess G. / Sörnmo, Leif / Sugano, Nobuhiko / Werner, Jürgen /

6 Issues per year


IMPACT FACTOR 2017: 1.096
5-year IMPACT FACTOR: 1.492

CiteScore 2017: 0.48

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.356

Online
ISSN
1862-278X
See all formats and pricing
More options …
Volume 63, Issue 6

Issues

Volume 57 (2012)

Effect of TMS coil orientation on the spatial distribution of motor evoked potentials in an intrinsic hand muscle

Victor Hugo SouzaORCID iD: http://orcid.org/0000-0002-0254-4322
  • Corresponding author
  • Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), Av. Bandeirantes, 3900, 14040-901 Ribeirão Preto-SP, Brazil, Phone: +55 16 33153778, Fax: +55 16 33154887
  • orcid.org/0000-0002-0254-4322
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Taian Martins Vieira
  • Departamento de Arte Corporal, Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 540, 21941-599 Rio de Janeiro, RJ, Brazil
  • Laboratorio di Ingegneria del Sistema Neuromuscolare, Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, Via Cavalli 22/H, 10138 Turin, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ André Salles Cunha Peres
  • Instituto Internacional de Neurociência de Natal Edmond e Lily Safra, Instituto Santos Dumont, Rodovia RN 160 Km 03, 3003, 59280-000 Macaíba-RN, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marco Antonio Cavalcanti GarciaORCID iD: http://orcid.org/0000-0002-8225-6573 / Claudia Domingues Vargas
  • Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941-902 Rio de Janeiro-RJ, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Oswaldo Baffa
  • Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14040-901 Ribeirão Preto, SP, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-08-10 | DOI: https://doi.org/10.1515/bmt-2016-0240

Abstract

Previous reports on the relationship between coil orientation and amplitude of motor evoked potential (MEP) in transcranial magnetic stimulation (TMS) did not consider the effect of electrode arrangement. Here we explore this open issue by investigating whether TMS coil orientation affects the amplitude distribution of MEPs recorded from the abductor pollicis brevis (APB) muscle with a bi-dimensional grid of 61 electrodes. Moreover, we test whether conventional mono- and bipolar montages provide representative MEPs compared to those from the grid of electrodes. Our results show that MEPs with the greatest amplitudes were elicited for 45° and 90° coil orientations, i.e. perpendicular to the central sulcus, for all electrode montages. Stimulation with the coil oriented at 135° and 315°, i.e. parallel to the central sulcus, elicited the smallest MEP amplitudes. Additionally, changes in coil orientation did not affect the spatial distribution of MEPs over the muscle extent. It has been shown that conventional electrodes with detection volume encompassing the APB belly may detect representative MEPs for optimal coil orientations. In turn, non-optimal orientations were identified only with the grid of electrodes. High-density electromyography may therefore provide new insights into the effect of coil orientation on MEPs from the APB muscle.

Keywords: brain stimulation; conventional electrodes; electric field direction; high-density electromyography; muscle imaging; transcranial magnetic stimulation

References

  • [1]

    Balslev D, Braet W, McAllister C, Miall RC. Inter-individual variability in optimal current direction for transcranial magnetic stimulation of the motor cortex. J Neurosci Methods 2007; 162: 309–313.Google Scholar

  • [2]

    Bashir S, Perez JM, Horvath JC, Pascual-Leone A. Differentiation of motor cortical representation of hand muscles by navigated mapping of optimal TMS current directions in healthy subjects. J Clin Neurophysiol 2013; 30: 390–395.Google Scholar

  • [3]

    Bembenek JP, Kurczych K, Karli Nski M, Czlonkowska A. The prognostic value of motor-evoked potentials in motor recovery and functional outcome after stroke−a systematic review of the literature. Funct Neurol 2012; 27: 79–84.Google Scholar

  • [4]

    Brasil-Neto JP, Cohen LG, Panizza M, Nilsson J, Roth BJ, Hallett M. Optimal focal transcranial magnetic activation of the human motor cortex: effects of coil orientation, shape of the induced current pulse, and stimulus intensity. J Clin Neurophysiol 1992; 9: 132–136.Google Scholar

  • [5]

    Conforto AB, Z’Graggen WJ, Kohl AS, Rösler KM, Kaelin-Lang A. Impact of coil position and electrophysiological monitoring on determination of motor thresholds to transcranial magnetic stimulation. Clin Neurophysiol 2004; 115: 812–819.Google Scholar

  • [6]

    Corneal SF, Butler AJ, Wolf SL. Intra- and intersubject reliability of abductor pollicis brevis muscle motor map characteristics with transcranial magnetic stimulation. Arch Phys Med Rehabil 2005; 86: 1670–1675.Google Scholar

  • [7]

    D’Ostilio K, Goetz SM, Hannah R, et al. Effect of coil orientation on strength-duration time constant and I-wave activation with controllable pulse parameter transcranial magnetic stimulation. Clin Neurophysiol 2016; 127: 675–683.Google Scholar

  • [8]

    Day BL, Dressler D, Maertens de Noordhout A, et al. Electric and magnetic stimulation of human motor cortex: surface EMG and single motor unit responses. J Physiol 1989; 412: 449–473.Google Scholar

  • [9]

    De Luca CJ, Kuznetsov M, Gilmore LD, Roy SH. Inter-electrode spacing of surface EMG sensors: reduction of crosstalk contamination during voluntary contractions. J Biomech 2012; 45: 555–561.Google Scholar

  • [10]

    Desmedt HE, Gidaux E. Spinal motoneuron recruitment in man: rank deordering with direction but not with speed of voluntary movement. Science 1981; 214: 933–936.Google Scholar

  • [11]

    Di Lazzaro V, Oliviero A, Saturno E, et al. The effect on corticospinal volleys of reversing the direction of current induced in the motor cortex by transcranial magnetic stimulation. Exp Brain Res 2001; 138: 268–273.Google Scholar

  • [12]

    Di Lazzaro V, Oliviero A, Pilato F, et al. The physiological basis of transcranial motor cortex stimulation in conscious humans. Clin Neurophysiol 2004; 115: 255–266.Google Scholar

  • [13]

    Gallina A, Vieira T. Territory and fiber orientation of vastus medialis motor units: a Surface electromyography investigation. Muscle Nerve 2015; 52: 1057–1065.Google Scholar

  • [14]

    Hallett M. Transcranial magnetic stimulation and the human brain. Nature 2000; 406: 147–150.Google Scholar

  • [15]

    Jacobson MD, Raab R, Fazeli BM, Abrams RA, Botte MJ, Lieber RL. Architectural design of the human intrinsic hand muscles. J Hand Surg Am 1992; 17: 804–809.Google Scholar

  • [16]

    Julkunen P, Säisänen L, Danner N, et al. Comparison of navigated and non-navigated transcranial magnetic stimulation for motor cortex mapping, motor threshold and motor evoked potentials. Neuroimage 2009; 44: 790–795.Google Scholar

  • [17]

    Kammer T, Beck S, Thielscher A, Laubis-Herrmann U, Topka H. Motor thresholds in humans: a transcranial magnetic stimulation study comparing different pulse waveforms, current directions and stimulator types. Clin Neurophysiol 2001; 112: 250–258.Google Scholar

  • [18]

    Kleine BU, Schumann N-P, Stegeman DF, Scholle HC. Surface EMG mapping of the human trapezius muscle: the topography of monopolar and bipolar surface EMG amplitude and spectrum parameters at varied forces and in fatigue. Clin Neurophysiol 2000; 111: 686–693.Google Scholar

  • [19]

    Kleine B, Praamstra P, Zwarts M, Stegeman D. Impaired motor cortical inhibition in Parkinson’s disease: motor unit responses to transcranial magnetic stimulation. Exp Brain Res 2001; 138: 477–483.Google Scholar

  • [20]

    Knecht S, Sommer J, Deppe M, Steinsträter O. Scalp position and efficacy of transcranial magnetic stimulation. Clin Neurophysiol 2005; 116: 1988–1993.Google Scholar

  • [21]

    Komssi S, Kähkönen S, Ilmoniemi RJ. The effect of stimulus intensity on brain responses evoked by transcranial magnetic stimulation. Hum Brain Mapp 2004; 21: 154–164.Google Scholar

  • [22]

    Laakso I, Hirata A, Ugawa Y. Effects of coil orientation on the electric field induced by TMS over the hand motor area. Phys Med Biol 2014; 59: 203–218.Google Scholar

  • [23]

    Lynn PA, Bettles ND, Hughes AD, Johnson SW. Influences of electrode geometry on bipolar recordings of the surface electromyogram. Med Biol Eng Comput 1978; 16: 651–660.Google Scholar

  • [24]

    McLean L, Goudy N. Neuromuscular response to sustained low-level muscle activation: within- and between-synergist substitution in the triceps surae muscles. Eur J Appl Physiol 2004; 91: 204–216.Google Scholar

  • [25]

    Merletti R, Lo Conte L, Avignone E, Guglielminotti P. Modeling of surface myoelectric signals. I. Model implementation. IEEE Trans Biomed Eng 1999; 46: 810–820.Google Scholar

  • [26]

    Merletti R, Holobar A, Farina D. Analysis of motor units with high-density surface electromyography. J Electromyogr Kinesiol 2008; 18 :879–890.Google Scholar

  • [27]

    Merletti R, Aventaggiato M, Botter A, Holobar A, Marateb H, Vieira TMM. Advances in surface EMG: recent progress in detection and processing techniques. Crit Rev Biomed Eng 2010; 38: 305–345.Google Scholar

  • [28]

    Mesin L, Merletti R, Rainoldi A. Surface EMG: the issue of electrode location. J Electromyogr Kinesiol 2009; 19: 719–726.Google Scholar

  • [29]

    Mesin L, Merletti R, Vieira TMM. Insights gained into the interpretation of surface electromyograms from the gastrocnemius muscles: a simulation study. J Biomech 2011; 44: 1096–1103.Google Scholar

  • [30]

    Mills KR, Boniface SJ, Schubert M. Magnetic brain stimulation with a double coil: the importance of coil orientation. Electroencephalogr Clin Neurophysiol 1992; 85: 17–21.Google Scholar

  • [31]

    Napier JR. The attachments and function of the abductor pollicis brevis. J Anat 1952; 86: 335–341.Google Scholar

  • [32]

    Opitz A, Legon W, Rowlands A, Bickel WK, Paulus W, Tyler WJ. Physiological observations validate finite element models for estimating subject-specific electric field distributions induced by transcranial magnetic stimulation of the human motor cortex. Neuroimage 2013; 81: 253–264.Google Scholar

  • [33]

    Pascual-Leone A, Cohen LG, Brasil-Neto JP, Hallett M. Non-invasive differentiation of motor cortical representation of hand muscles by mapping of optimal current directions. Electroencephalogr Clin Neurophysiol 1994; 93: 42–48.Google Scholar

  • [34]

    Pell GS, Roth Y, Zangen A. Modulation of cortical excitability induced by repetitive transcranial magnetic stimulation: influence of timing and geometrical parameters and underlying mechanisms. Prog Neurobiol 2011; 93: 59–98.Google Scholar

  • [35]

    R Core Team. R: a language and environment for statistical computing 2016.Google Scholar

  • [36]

    Richter L, Neumann G, Oung S, Schweikard A, Trillenberg P. Optimal coil orientation for transcranial magnetic stimulation. PLoS One 2013; 8: 1–10.Google Scholar

  • [37]

    Roeleveld K, Stegeman DF, Vingerhoets HM, Van Oosterom A. The motor unit potential distribution over the skin surface and its use in estimating the motor unit location. Acta Physiol Scand 1997; 161: 465–472.Google Scholar

  • [38]

    Rossi S, Hallett M, Rossini PM, Pascual-Leone A, Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 2009; 120: 2008–2039.Google Scholar

  • [39]

    Rossini PM, Rossi S. Clinical applications of motor evoked potentials. Electroencephalogr Clin Neurophysiol 1998; 106: 180–194.Google Scholar

  • [40]

    Rossini PM, Burke D, Chen R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol 2015; 126: 1071–1107.Google Scholar

  • [41]

    Säisänen L, Pirinen E, Teitti S, et al. Factors influencing cortical silent period: optimized stimulus location, intensity and muscle contraction. J Neurosci Methods 2008; 169: 231–238.Google Scholar

  • [42]

    SENIAM project (Surface Electromyography for the Non-Invasive Assessment of Muscles) n.d. http://www.seniam.org/ (accessed September 12, 2015).

  • [43]

    Souza VHO, Peres ASC, Baffa O. MEPHunter 2015. https://github.com/biomaglab/mephunter (accessed September 12, 2015).

  • [44]

    Thielscher A, Opitz A, Windhoff M. Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation. Neuroimage 2011; 54: 234–243.Google Scholar

  • [45]

    Van Dijk JP, Lowery MM, Lapatki BG, Stegeman DF. Evidence of potential averaging over the finite surface of a bioelectric surface electrode. Ann Biomed Eng 2009; 37: 1141–1151.Google Scholar

  • [46]

    Van Elswijk G, Kleine BU, Overeem S, Eshuis B, Hekkert KD, Stegeman DF. Muscle imaging: mapping responses to transcranial magnetic stimulation with high-density surface electromyography. Cortex 2008; 44: 609–616.Google Scholar

  • [47]

    Van Sint Jan S, Rooze M. The thenar muscles. Surg Radiol Anat 1992; 14: 325–329.Google Scholar

  • [48]

    van Vugt JP, van Dijk JG. A convenient method to reduce crosstalk in surface EMG. Cobb Award-winning article, 2001. Clin Neurophysiol 2001; 112: 583–592.Google Scholar

  • [49]

    Vieira TMM, Merletti R, Mesin L. Automatic segmentation of surface EMG images: improving the estimation of neuromuscular activity. J Biomech 2010; 43: 2149–2158.Google Scholar

  • [50]

    Vieira TMM, Loram ID, Muceli S, Merletti R, Farina D. Postural activation of the human medial gastrocnemius muscle: are the muscle units spatially localised? J Physiol 2011; 589: 431–443.Google Scholar

  • [51]

    Vieira TM, Botter A, Minetto MA, Hodson-Tole EF. Spatial variation of compound muscle action potentials across human gastrocnemius medialis. J Neurophysiol 2015; 114: 1617–1627.Google Scholar

  • [52]

    Wassermann EM, Zimmermann T. Transcranial magnetic brain stimulation: therapeutic promises and scientific gaps. Pharmacol Ther 2012; 133: 98–107.Google Scholar

  • [53]

    Wassermann EM, McShane LM, Hallett M, Cohen LG. Noninvasive mapping of muscle representations in human motor cortex. Electroencephalogr Clin Neurophysiol 1992; 85: 1–8.Google Scholar

  • [54]

    Werhahn KJ, Fong JK, Meyer BU, et al. The effect of magnetic coil orientation on the latency of surface EMG and single motor unit responses in the first dorsal interosseous muscle. Electroencephalogr Clin Neurophysiol 1994; 93: 138–146.Google Scholar

  • [55]

    Ziemann U. Transcranial magnetic stimulation: its current role in the evaluation of patients post-stroke. J Neurol Phys Ther 2000; 24: 82–93.Google Scholar

About the article

aTaian Martins Vieira and André Salles Cunha Peres: These authors contributed equally to this work


Received: 2016-08-24

Accepted: 2017-07-03

Published Online: 2017-08-10

Published in Print: 2018-11-27


Funding: VHS was a recipient of a scholarship provided by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP; 2012/11937-0). This research has been conducted as part of the activities of FAPESP research, dissemination, and innovation center for Neuromathematics (grant 2013/07699-0). This work was also supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Conflict of interest statement: Authors state no conflict of interest.


Citation Information: Biomedical Engineering / Biomedizinische Technik, Volume 63, Issue 6, Pages 635–645, ISSN (Online) 1862-278X, ISSN (Print) 0013-5585, DOI: https://doi.org/10.1515/bmt-2016-0240.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Victor Hugo Souza, Renan H. Matsuda, André S.C. Peres, Paulo Henrique J. Amorim, Thiago F. Moraes, Jorge Vicente L. Silva, and Oswaldo Baffa
Journal of Neuroscience Methods, 2018
[3]
Christian Svane, Christian Riis Forman, Jens Bo Nielsen, and Svend Sparre Geertsen
Experimental Brain Research, 2018

Comments (0)

Please log in or register to comment.
Log in