Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Engineering / Biomedizinische Technik

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering and the German Society of Biomaterials

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Habibović, Pamela / Haueisen, Jens / Jahnen-Dechent, Wilhelm / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Lenarz, Thomas / Leonhardt, Steffen / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Boenick, Ulrich / Jaramaz, Branislav / Kraft, Marc / Lenthe, Harry / Lo, Benny / Mainardi, Luca / Micera, Silvestro / Penzel, Thomas / Robitzki, Andrea A. / Schaeffter, Tobias / Snedeker, Jess G. / Sörnmo, Leif / Sugano, Nobuhiko / Werner, Jürgen /

6 Issues per year


IMPACT FACTOR 2017: 1.096
5-year IMPACT FACTOR: 1.492

CiteScore 2017: 0.48

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.356

Online
ISSN
1862-278X
See all formats and pricing
More options …
Volume 63, Issue 6

Issues

Volume 57 (2012)

Head phantoms for electroencephalography and transcranial electric stimulation: a skull material study

Alexander Hunold
  • Corresponding author
  • Institute of Biomedical Engineering and Informatics, Department of Computer Science and Automation, Technische Universität Ilmenau, POB 100565, D-98684 Ilmenau, Germany, Phone: +49 3677 69-1348, Fax: +49 3677 69-1311
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Daniel Strohmeier
  • Institute of Biomedical Engineering and Informatics, Department of Computer Science and Automation, Technische Universität Ilmenau, D-98683 Ilmenau, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Patrique Fiedler
  • Institute of Biomedical Engineering and Informatics, Department of Computer Science and Automation, Technische Universität Ilmenau, D-98683 Ilmenau, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jens Haueisen
  • Institute of Biomedical Engineering and Informatics, Department of Computer Science and Automation, Technische Universität Ilmenau, D-98683 Ilmenau, Germany
  • Biomagnetic Center, Department of Neurology, Jena University Hospital, D-07743 Jena, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-08-18 | DOI: https://doi.org/10.1515/bmt-2017-0069

Abstract

Physical head phantoms allow the assessment of source reconstruction procedures in electroencephalography and electrical stimulation profiles during transcranial electric stimulation. Volume conduction in the head is strongly influenced by the skull, which represents the main conductivity barrier. Realistic modeling of its characteristics is thus important for phantom development. In the present study, we proposed plastic clay as a material for modeling the skull in phantoms. We analyzed five clay types varying in granularity and fractions of fire clay, each with firing temperatures from 550°C to 950°C. We investigated the conductivity of standardized clay samples when immersed in a 0.9% sodium chloride solution with time-resolved four-point impedance measurements. To test the reusability of the clay model, these measurements were repeated after cleaning the samples by rinsing in deionized water for 5 h. We found time-dependent impedance changes for approximately 5 min after immersion in the solution. Thereafter, the conductivities stabilized between 0.0716 S/m and 0.0224 S/m depending on clay type and firing temperatures. The reproducibility of the measurement results proved the effectiveness of the rinsing procedure. Clay provides formability, is permeable to ions, can be adjusted in conductivity value and is thus suitable for the skull modeling in phantoms.

Keywords: clay; dielectric spectroscopy; ionic liquids; pottery; tACS; tDCS

References

  • [1]

    Aydin Ü, Vorwerk J, Dümpelmann M, et al. Combined EEG/MEG can outperform single modality EEG or MEG source reconstruction in presurgical epilepsy diagnosis. PLoS One 2015; 10: e0118753.Google Scholar

  • [2]

    Baillet S, Mosher JC, Leahy RM. Electromagnetic brain mapping. IEEE Signal Process Mag 2001; 18: 14–30.Google Scholar

  • [3]

    Baillet S, Riera JJ, Marin G, Mangin JF, Aubert J, Garnero L. Evaluation of inverse methods and head models for EEG source localization using a human skull phantom. Phys Med Biol 2001; 46: 77–96.Google Scholar

  • [4]

    Barbour RL, Graber HL, Xu Y, et al. A programmable laboratory testbed in support of evaluation of functional brain activation and connectivity. IEEE Trans Neural Syst Rehabil Eng 2012; 20: 170–183.Google Scholar

  • [5]

    Collier TJ, Kynor DB, Bieszczad J, Audette WE, Kobylarz EJ, Diamond SG. Creation of a human head phantom for testing of electroencephalography equipment and techniques. IEEE Trans Biomed Eng 2012; 59: 2628–2634.Google Scholar

  • [6]

    Cooper RJ, Bhatt D, Everdell NL, Jeremy CH. A tissue-like optically turbid and electrically conducting phantom for simultaneous EEG and near-infrared imaging. Phys Med Biol 2009; 54: N403.Google Scholar

  • [7]

    Cooper RJ, Eames R, Brunker J, Enfield LC, Gibson AP, Hebden JC. A tissue equivalent phantom for simultaneous near-infrared optical tomography and EEG. Biomed Opt Express 2010; 1: 425–430.Google Scholar

  • [8]

    Geddes LA, Baker LE. The specific resistance of biological material – a compendium of data for the biomedical engineer and physiologist. Med Biol Eng 1967; 5: 271–293.Google Scholar

  • [9]

    Hofner N, Albrecht HH, Cassara AM, et al. Are brain currents detectable by means of low-field NMR? A phantom study. Magn Reson Imaging 2011; 29: 1365–1373.Google Scholar

  • [10]

    Homma S, Musha T, Nakajima Y, et al. Conductivity ratios of the scalp-skull-brain head model in estimating equivalent dipole sources in human brain. Neurosci Res 1995; 22: 51–55.Google Scholar

  • [11]

    Hunold A, Haueisen J, Ahtam B, et al. Localization of the epileptogenic foci in tuberous sclerosis complex: a pediatric case report. Front Hum Neurosci 2014; 8: 175.Google Scholar

  • [12]

    Jung YJ, Kim JH, Kim D, Im CH. An image-guided transcranial direct current stimulation system: a pilot phantom study. Physiol Meas 2013; 34: 937–950.Google Scholar

  • [13]

    Kim D, Jeong J, Jeong S, Kim S, Jun SC, Chung E. Validation of computational studies for electrical brain stimulation with phantom head experiments. Brain Stimul 2015; 8: 914–935.Google Scholar

  • [14]

    Leahy RM, Mosher JC, Spencer ME, Huang MX, Lewine JD. A study of dipole localization accuracy for MEG and EEG using a human skull phantom. Electroencephalogr Clin Neurophysiol 1998; 107: 159–173.Google Scholar

  • [15]

    Lewis JA, Smay JE, Stuecker J, Cesarano J. Direct ink writing of three-dimensional ceramic structures. J Am Ceram Soc 2006; 89: 3599–3609.Google Scholar

  • [16]

    Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 2000; 527: 633–639.Google Scholar

  • [17]

    Oostendorp TF, Delbeke J, Stegeman DF. The conductivity of the human skull: results of in vivo and in vitro measurements. IEEE Trans Biomed Eng 2000; 47: 1487–1492.Google Scholar

  • [18]

    Sadleir RJ, Neralwala F, Te T, Tucker A. A controllably anisotropic conductivity or diffusion phantom constructed from isotropic layers. Ann Biomed Eng 2009; 37: 2522–2531.Google Scholar

  • [19]

    Sperandio M, Guermandi M, Guerrieri R. A four-shell diffusion phantom of the head for electrical impedance tomography. IEEE Trans Biomed Eng 2012; 59: 383–389.Google Scholar

  • [20]

    Stenroos M, Hunold A, Haueisen J. Comparison of three-shell and simplified volume conductor models in magnetoencephalography. Neuroimage 2014; 94: 337–348.Google Scholar

  • [21]

    Tenner U, Haueisen J, Nowak H, Leder U, Brauer H. Source localization in an inhomogeneous physical thorax phantom. Phys Med Biol 1999; 44: 1969–1981.Google Scholar

  • [22]

    Wagner S, Lucka F, Vorwerk J, et al. Using reciprocity for relating the simulation of transcranial current stimulation to the EEG forward problem. Neuroimage 2016; 140: 163–173.Google Scholar

  • [23]

    Wendel K, Narra NG, Hannula M, Kauppinen P, Malmivuo J. The influence of CSF on EEG sensitivity distributions of multilayered head models. IEEE Trans Biomed Eng 2008; 55: 1454–1456.Google Scholar

  • [24]

    Wetterling F, Liehr M, Schimpf P, Liu H, Haueisen J. The localization of focal heart activity via body surface potential measurements: tests in a heterogeneous torso phantom. Phys Med Biol 2009; 54: 5395–5409.Google Scholar

About the article

Received: 2017-05-05

Accepted: 2017-07-17

Published Online: 2017-08-18

Published in Print: 2018-11-27


Citation Information: Biomedical Engineering / Biomedizinische Technik, Volume 63, Issue 6, Pages 683–689, ISSN (Online) 1862-278X, ISSN (Print) 0013-5585, DOI: https://doi.org/10.1515/bmt-2017-0069.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in