Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Engineering / Biomedizinische Technik

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering and the German Society of Biomaterials

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Habibović, Pamela / Haueisen, Jens / Jahnen-Dechent, Wilhelm / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Lenarz, Thomas / Leonhardt, Steffen / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Boenick, Ulrich / Jaramaz, Branislav / Kraft, Marc / Lenthe, Harry / Lo, Benny / Mainardi, Luca / Micera, Silvestro / Penzel, Thomas / Robitzki, Andrea A. / Schaeffter, Tobias / Snedeker, Jess G. / Sörnmo, Leif / Sugano, Nobuhiko / Werner, Jürgen /

6 Issues per year


IMPACT FACTOR 2017: 1.096
5-year IMPACT FACTOR: 1.492

CiteScore 2017: 0.48

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.356

Online
ISSN
1862-278X
See all formats and pricing
More options …
Volume 63, Issue 6

Issues

Volume 57 (2012)

Bone plate-screw constructs for osteosynthesis – recommendations for standardized mechanical torsion and bending tests

Hendrik Schorler
  • Corresponding author
  • Universität zu Lübeck, Klinik für Orthopädie und Unfallchirurgie, Labor für Biomechanik, 23562 Lübeck, Germany
  • Hochschule Ulm, Fakultät Mechatronik und Medizintechnik, Labor für Biomechatronik, 89081 Ulm, Germany
  • awiso® – Arbeitsgemeinschaft winkelstabile Osteosynthese e.V., 21033 Hamburg, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Robert Wendlandt
  • Universität zu Lübeck, Klinik für Orthopädie und Unfallchirurgie, Labor für Biomechanik, 23562 Lübeck, Germany
  • awiso® – Arbeitsgemeinschaft winkelstabile Osteosynthese e.V., 21033 Hamburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christian Jürgens
  • Universität zu Lübeck, Klinik für Orthopädie und Unfallchirurgie, Labor für Biomechanik, 23562 Lübeck, Germany
  • awiso® – Arbeitsgemeinschaft winkelstabile Osteosynthese e.V., 21033 Hamburg, Germany
  • BG Unfallkrankenhaus Hamburg, Abteilung für Orthopädie, Unfallchirurgie und Sportmedizin, 21033 Hamburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Arndt-Peter Schulz
  • Universität zu Lübeck, Klinik für Orthopädie und Unfallchirurgie, Labor für Biomechanik, 23562 Lübeck, Germany
  • awiso® – Arbeitsgemeinschaft winkelstabile Osteosynthese e.V., 21033 Hamburg, Germany
  • BG Unfallkrankenhaus Hamburg, Abteilung für Orthopädie, Unfallchirurgie und Sportmedizin, 21033 Hamburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christian Kaddick / Felix Capanni
  • Hochschule Ulm, Fakultät Mechatronik und Medizintechnik, Labor für Biomechatronik, 89081 Ulm, Germany
  • awiso® – Arbeitsgemeinschaft winkelstabile Osteosynthese e.V., 21033 Hamburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-12-18 | DOI: https://doi.org/10.1515/bmt-2017-0126

Abstract

This paper follows up on a recent systematic review of test methods and parameters for biomechanical testing of bone plates and it is the first study that contains recommendations for standardized mechanical testing of bone plate-screw constructs for osteosynthesis. Following the testing philosophy of ASTM F382 and ISO 9585, we have developed standardized quasi-static and dynamic testing methods for straight linear and anatomically shaped plates, including locked type and conventional systems. The test specification comprises torsion and bending tests along the implant axis and therefore modifies and extends the methods proposed by ASTM F382. We present specific test setups in order to determine product-specific characteristics of the mechanical construct, consisting of the bone plate with corresponding screws (such as construct stiffness, yield strength, ultimate strength and fatigue properties) under the condition that it is rigidly fixed to “healthy bone”. We also address specific testing requirements that are important for the purpose of standardization, such as the positioning of the construct for testing or the number of screws in the diaphysis and metaphysis. Finally, we define the outcome parameters and associated failure criteria related to quasi-static and dynamic testing for comparative purposes. This paper does not intend to replace biomechanical testing of those devices under physiological loading conditions.

Keywords: device approval; internal fixators; materials testing; orthopedic fixation devices

References

  • [1]

    ASTM F382-14, Standard Specification and Test Method for Metallic Bone Plates, ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States 2014.Google Scholar

  • [2]

    ASTM F384-12, Standard Specifications and Test Methods for Metallic Angled Orthopedic Fracture Fixation Devices, ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States 2012.Google Scholar

  • [3]

    ASTM F543-13, Standard Specification and Test Methods for Metallic Medical Bone Screws, ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States 2007.Google Scholar

  • [4]

    ASTM F1264-16, Standard Specification and Test Methods for Intramedullary Fixation Device, ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, Unites States 2016.Google Scholar

  • [5]

    ASTM F1541-15, Standard Specification and Test Methods for External Skeletal fixation Devices, ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, Unites States 2015.Google Scholar

  • [6]

    ASTM F1717-15, Standard Test Methods for Spinal Implant Constructs in a Vertebrectomy Model, ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, Unites States 2015.Google Scholar

  • [7]

    ASTM STP731 – Tables for estimating median fatigue limits – R.E. Little, American Society for testing and materials, 1916 Race street, Philadelphia, Pa. 19103, Michigan, United States 1981.Google Scholar

  • [8]

    Bottlang M, Doornink J, Fitzpatrick DC, Madey SM. Far cortical locking can reduce stiffness of locked plating constructs while retaining construct strength. J Bone Joint Surg Am 2009; 91: 1985–1994.Google Scholar

  • [9]

    Bottlang M, Doornink J, Lujan TJ, et al. Effects of construct stiffness on healing of fractures stabilized with locking plates. Bone Joint Surg Am 2010; 92(Suppl. 2): 12–22.Google Scholar

  • [10]

    Fitzpatrick DC, Doornink J, Madey SM, Bottlang M. Relative stability of conventional and locked plating fixation in a model of the osteoporotic femoral diaphysis. Clin Biomech 2009; 24: 203–209.Google Scholar

  • [11]

    Heiner AD. Structural properties of fourth-generation composite femurs and tibias. J Biomech 2008; 41: 3282–3284.Google Scholar

  • [12]

    http://www.endolab.de (Website access: 2017-04-20).

  • [13]

    ISO 6475, Implants for surgery – Metal bone screws with asymmetrical thread and spherical under-surface – Mechanical requirements and test methods, International Organization for Standardization, Case postale 56, CH-1211 Geneva 20, Switzerland 1989.Google Scholar

  • [14]

    ISO 9585, Implants for surgery – Determination of bending strength and stiffness of bone plates, International Organization for Standardization, Case postale 56, CH-1211 Geneva 20, Switzerland 1990.Google Scholar

  • [15]

    ISO 12107, Metallic materials – Fatigue testing – Statistical planning and analysis of data, International Organization for Standardization, Case postale 56, CH-1211 Geneva 20, Switzerland 2012.Google Scholar

  • [16]

    ISO 14602, Non-active surgical implants – Implants for osteosynthesis – Particular requirements, International Organization for Standardization, Case postale 56, CH-1211 Geneva 20, Switzerland 2010.Google Scholar

  • [17]

    ISO 14630, Non-active surgical implants – General requirements, International Organization for Standardization, Case postale 56, CH-1211 Geneva 20, Switzerland 2012.Google Scholar

  • [18]

    Kubiak EN, Fulkerson E, Strauss E, Egol KA. The evolution of locked plates. J Bone Joint Surg Am 2006; 88: 189–200.Google Scholar

  • [19]

    Reprinted from Publication: Lasanianos NG, Garnavos C, Magnisalis E, Kourkoulis S, Babis GC. A comparative biomechanical study for complex tibial plateau fractures: nailing and compression bolts versus modern and traditional plating. Injury 2013; 44: 1333–1339. with permission from Elsevier.Google Scholar

  • [20]

    Schorler H, Capanni F, Gaashan M, Wendlandt R, Jürgens C, Schulz AP. Bone plates for osteosynthesis – a systematic review of test methods and parameters for biomechanical testing. Biomed Tech (Berl) 2017; 62: 235–243.Google Scholar

  • [21]

    VDI 5703, Systematical development for a model-based testing of medical devices, Beuth Verlag, 10772 Berlin, 2015.Google Scholar

About the article

Received: 2017-04-22

Accepted: 2017-07-04

Published Online: 2017-12-18

Published in Print: 2018-11-27


Citation Information: Biomedical Engineering / Biomedizinische Technik, Volume 63, Issue 6, Pages 719–727, ISSN (Online) 1862-278X, ISSN (Print) 0013-5585, DOI: https://doi.org/10.1515/bmt-2017-0126.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in