Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Merhof, Dorit

Biomedical Engineering / Biomedizinische Technik

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering and the German Society of Biomaterials

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Habibović, Pamela / Haueisen, Jens / Jahnen-Dechent, Wilhelm / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Leonhardt, Steffen / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Boenick, Ulrich / Jaramaz, Branislav / Kraft, Marc / Lenarz, Thomas / Lenthe, Harry / Lo, Benny / Mainardi, Luca / Micera, Silvestro / Penzel, Thomas / Robitzki, Andrea A. / Schaeffter, Tobias / Snedeker, Jess G. / Sörnmo, Leif / Sugano, Nobuhiko / Werner, Jürgen /

IMPACT FACTOR 2018: 1.007
5-year IMPACT FACTOR: 1.390

CiteScore 2018: 1.24

SCImago Journal Rank (SJR) 2018: 0.282
Source Normalized Impact per Paper (SNIP) 2018: 0.831

See all formats and pricing
More options …
Volume 64, Issue 3


Volume 57 (2012)

Impact of strut dimensions and vessel caliber on thrombosis risk of bioresorbable scaffolds using hemodynamic metrics

Michael Stiehm
  • Corresponding author
  • Institute for ImplantatTechnology and Biomaterials e.V., Friedrich-Barnewitz-Str. 4, 18119 Rostock-Warnemünde, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Carolin Wüstenhagen
  • Institute for ImplantatTechnology and Biomaterials e.V., Friedrich-Barnewitz-Str. 4, 18119 Rostock-Warnemünde, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stefan Siewert
  • Institute for ImplantatTechnology and Biomaterials e.V., Friedrich-Barnewitz-Str. 4, 18119 Rostock-Warnemünde, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hüseyin Ince
  • Center for Internal Medicine, Department of Cardiology, Rostock University Medical Center, Ernst-Heydemann-Straße 6, 18057 Rostock, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Niels Grabow
  • Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Str. 4, 18119 Rostock-Warnemünde, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Klaus-Peter Schmitz
  • Institute for ImplantatTechnology and Biomaterials e.V., Friedrich-Barnewitz-Str. 4, 18119 Rostock-Warnemünde, Germany
  • Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Str. 4, 18119 Rostock-Warnemünde, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-06-22 | DOI: https://doi.org/10.1515/bmt-2017-0101


Bioresorbable scaffolds (BRS) promise to be the treatment of choice for stenosed coronary vessels. But higher thrombosis risk found in current clinical studies limits the expectations. Three hemodynamic metrics are introduced to evaluate the thrombosis risk of coronary stents/scaffolds using transient computational fluid dynamics (CFD). The principal phenomena are platelet activation and effective diffusion (platelet shear number, PSN), convective platelet transport (platelet convection number, PCN) and platelet aggregation (platelet aggregation number, PAN) were taken into consideration. In the present study, two different stent designs (thick-strut vs. thin-strut design) positioned in small- and medium-sized vessels (reference vessel diameter, RVD=2.25 mm vs. 2.70 mm) were analyzed. In both vessel models, the thick-strut design induced higher PSN, PCN and PAN values than the thin-strut design (thick-strut vs. thin-strut: PSN=2.92/2.19 and 0.54/0.30; PCN=3.14/1.15 and 2.08/0.43; PAN: 14.76/8.19 and 20.03/10.18 for RVD=2.25 mm and 2.70 mm). PSN and PCN are increased by the reduction of the vessel size (PSN: RVD=2.25 mm vs. 2.70 mm=5.41 and 7.30; PCN: RVD=2.25 mm vs. 2.70 mm=1.51 and 2.67 for thick-strut and thin-strut designs). The results suggest that bulky stents implanted in small caliber vessels may substantially increase the thrombosis risk. Moreover, sensitivity analyses imply that PSN is mostly influenced by vessel size (lesion-related factor), whereas PCN and PAN sensitively respond to strut-thickness (device-related factor).

Keywords: bioresorbable scaffold; CFD; non-Newtonian; numerical simulation; thrombosis; transient


  • [1]

    Briguori C, Sarais C, Pagnotta P, Liistro F, Montorfano M, Chieffo A, et al. In-stent restenosis in small coronary arteries. Impact of strut thickness. J Am Coll Cardiol 2002;40:403–9.PubMedCrossrefGoogle Scholar

  • [2]

    Frank AO, Walsh PW, Moore JE. Computational fluid dynamics and stent design. Artif Organs 2002;26:614–21.CrossrefPubMedGoogle Scholar

  • [3]

    Kastrati A, Mehilli J, Dirschinger J, Dotzer F, Schühlen H, Neumann F, et al. Intracoronary stenting and angiographic results. Strut thickness effect on restenosis outcome (ISAR-STEREO) trial. Circulation 2001;103:2816–21.CrossrefPubMedGoogle Scholar

  • [4]

    Pache J, Kastrati A, Mehilli J, Schühlen H, Dotzer F, Hausleiter J, et al. Intracoronary stenting and angiographic results. Strut thickness effect on restenosis outcome (ISAR-STEREO-2) trial. J Am Coll Cardiol 2003;41:1283–8.PubMedCrossrefGoogle Scholar

  • [5]

    Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. J Am Med Assoc 1999;282:2035–42.CrossrefGoogle Scholar

  • [6]

    Gundert TJ, Marsden AL, Yang W, LaDisa JF. Optimization of cardiovascular stent design using computational fluid dynamics. J Biomech Eng 2012;134:1–8.Google Scholar

  • [7]

    Stiehm M, Brede M, Quosdorf D, Leder A. On the creation of wall shear stress by helical flow structures in stented coronary vessels. Bio Nano Mat 2013;14:109–15.Google Scholar

  • [8]

    Bourantas CV, Onuma Y, Farooq V, Zhang Y, Garcia-Garcia HM, Serruys PW. Bioresorbable scaffolds: current knowledge, potentialities and limitations experienced during their first clinical applications. Int J Cardiol 2013;167:11–21.PubMedCrossrefGoogle Scholar

  • [9]

    Foin N, Lee RD, Torii R, Guitierrez-Chico JL, Mattesini A, Nijjer S, et al. Impact of stent strut design in metallic stents and biodegradable scaffolds. Int J Cardiol 2014;177:800–8.PubMedCrossrefGoogle Scholar

  • [10]

    Onuma Y, Serruys PW. Bioresorbable scaffold: the advent of a new era in percutaneous coronary and peripheral revascularization? Circulation 2011;123:779–97.CrossrefPubMedGoogle Scholar

  • [11]

    Serruys PW, Onuma Y, Dudek D, Smits PC, Koolen J, Chevalier B, et al. Evaluation of the second generation of a bioresorbable everolimus-eluting vascular scaffold for the treatment of de novo coronary artery stenosis: 12-month clinical and imaging outcomes. J Am Coll Cardiol 2011;58:1578–88.CrossrefPubMedGoogle Scholar

  • [12]

    Capodanno D, Gori T, Nef H, Latib A, Mehilli J, Lesiak M, et al. Percutaneous coronary intervention with everolimus-eluting bioresorbable vascular scaffolds in routine clinical practice: early and midterm outcomes from the European multicentre GHOST-EU registry. EuroIntervention 2015;10:1144–53.PubMedCrossrefGoogle Scholar

  • [13]

    Capodanno D, Joner M, Zimarino M. What about the risk of thrombosis with bioresorbable scaffolds? EuroIntervention 2015;11:181–4.CrossrefGoogle Scholar

  • [14]

    Bourantas CV, Papafaklis MI, Kotsia A, Farooq V, Muramatsu T, Gomez-Lara J, et al. Effect of the endothelial shear stress patterns on neointimal proliferation following drug-eluting bioresorbable vascular scaffold implantation. JACC Cardiovasc Interv 2014;7:315–24.PubMedCrossrefGoogle Scholar

  • [15]

    Kolandaivelu K, Swaminathan R, Gibson WJ, Kolachalama VB, Nguyen-Ehrenreich K, Giddings VL, et al. Stent thrombogenicity early in high-risk interventional settings is driven by stent design and deployment and protected by polymer-drug coatings. Circulation 2011;123:1400–9.PubMedCrossrefGoogle Scholar

  • [16]

    Koppara T, Cheng Q, Yahagi K, Mori H, Sanchez OD, Feygin J, et al. Thrombogenicity and early vascular healing response in metallic biodegradable polymer-based and fully bioabsorbable drug-eluting stents. Circ Cardiovasc Interv 2015;8:1–9.Google Scholar

  • [17]

    Food and Drug Administration. Innovation or Stagnation. Challenge and Opportunity on the Critical Path to New Medical Products 2004.Google Scholar

  • [18]

    Malinauskas RA, Saha A, Sheldon MI. Working with the Food and Drug Administration’s center for devices to advance regulatory science and medical device innovation. Artif Organs 2015;39:293–9.PubMedCrossrefGoogle Scholar

  • [19]

    Food and Drug Administration. Stagnation and Innovation. Critical Path Opportunities List 2006.Google Scholar

  • [20]

    Elezi S, Kastrati A, Neumann F, Hadamitzky M, Dirschinger J, Schömig A. Vessel size and log-term outcome after coronary stent placement. Circulation 1998;98:1875–80.CrossrefGoogle Scholar

  • [21]

    Süselbeck T, Latsch A, Siri H, Gonska B, Poerner T, Pfleger S, et al. Role of vessel size as a predictor for the occurrence of in-stent restenosis in patients with diabetes mellitus. Am J Cardiol 2001;88:243–7.CrossrefPubMedGoogle Scholar

  • [22]

    Cassese S, Byrne RA, Tada T, Pinieck S, Joner M, Ibrahim T, et al. Incidence and predictors of restenosis after coronary stenting in 10 004 patients with surveillance angiography. Heart 2014;100:153–9.PubMedCrossrefGoogle Scholar

  • [23]

    Kereiakes DJ, Ellis SG, Kimura T, Abizaid A, Zhao W, Veldhof S, et al. Efficacy and safety of the absorb everolimus-eluting bioresorbable scaffold for treatment of patients with diabetes mellitus: results of the absorb diabetic substudy. JACC Cardiovasc Interv 2017;10:42–9.PubMedCrossrefGoogle Scholar

  • [24]

    Foin N, Gutierrez-Chico JL, Nakatani S, Torii R, Bourantas CV, Sen S, et al. Incomplete stent apposition causes high shear flow disturbances and delay in neointimal coverage as a function of strut to wall detachment distance. Implications for the management of incomplete stent apposition. Circ Cardiovasc Interv 2014;7:180–9.PubMedCrossrefGoogle Scholar

  • [25]

    Serruys PW, Chevalier B, Dudek D, Cequier A, Carrié D, Iniguez A, et al. A bioresorbable everolimus-eluting scaffold versus a metallic everolimus-eluting stent for ischaemic heart disease caused by de-novo native coronary artery lesions (ABSORB II): an interim 1-year analysis of clinical and procedural secondary outcomes from a randomised controlled trial. Lancet 2015;385:43–54.PubMedGoogle Scholar

  • [26]

    Chiu J, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev 2011;91:327–87.PubMedCrossrefGoogle Scholar

  • [27]

    Martin DM, Murphy EA, Boyle FJ. Computational fluid dynamics analysis of balloon-expandable coronary stents: influence of stent and vessel deformation. Med Eng Phys 2014;36:1047–56.PubMedCrossrefGoogle Scholar

  • [28]

    Nichols WW, O’Rourke MF, Vlachopoulos C. McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles. 6th ed. New York: Hodder Arnold; 2011.Google Scholar

  • [29]

    Shankaran H, Alexandridis P, Neelamegham S. Aspects of hydrodynamic shear regulating shear-induced platelet activation and self-association of von Willebrand factor in suspension. Blood 2003;101:2637–45.CrossrefPubMedGoogle Scholar

  • [30]

    Ding J, Chen Z, Niu S, Zhang J, Mondal NK, Griffith BP, et al. Quantification of shear-induced platelet activation: high shear stresses for short exposure time. Artif Organs 2015;39:576–83.PubMedCrossrefGoogle Scholar

  • [31]

    Chen Z, Mondal NK, Ding J, Koenig SC, Slaughter MS, Griffith BP, et al. Activation and shedding of platelet glycoprotein IIb/IIIa under non-physiological shear stress. Mol Cell Biochem 2015;409:93–101.CrossrefPubMedGoogle Scholar

  • [32]

    Wootton DM, Ku DN. Fluid mechanics of vascular systems, diseases, and thrombosis. Annu Rev Biomed Eng 1999;1:299–329.CrossrefPubMedGoogle Scholar

  • [33]

    Xu C, Wootton DM. Platelet near-wall excess in porcine whole blood in artery-sized tubes under steady and pulsatile flow conditions. Biorheology 2004;41:113–25.PubMedGoogle Scholar

  • [34]

    Aarts P, van den Broek S, Prins GW, Kuiken G, Sixma JJ, Heethaar RM. Blood platelets are concentrated near the wall and red blood cells, in the center in flowing blood. Arterioscl Throm Vas 1988;8:819–24.Google Scholar

  • [35]

    Sakariassen KS, Orning L, Turitto VT. The impact of blood shear rate on arterial thrombus formation. Future Sci OA 2015;1:FSO30.PubMedGoogle Scholar

  • [36]

    Duraiswamy N, Jayachandran B, Byrne J, Moore JE, Schoephoerster RT. Spatial distribution of platelet deposition in stented arterial models under physiologic flow. Ann Biomed Eng 2005;33:1767–77.CrossrefPubMedGoogle Scholar

  • [37]

    Beier S, Ormiston J, Webster M, Cater J, Norris S, Medrano-Gracia P, et al. Hemodynamics in idealized stented coronary arteries: important stent design considerations. Ann Biomed Eng 2016;44:315–29.PubMedCrossrefGoogle Scholar

  • [38]

    Caro CG, Fitz-Gerald JM, Schroter RC. Arterial wall shear and distribution of early artheroma in man. Nature 1969;223:1160–1.Google Scholar

  • [39]

    Caro CG, Fitz-Gerald JM, Schroter RC. Atheroma and arterial wall shear observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc R Soc London Ser B 1971;177:109–33.CrossrefGoogle Scholar

  • [40]

    Finn AV, Joner M, Nakazawa G, Kolodgie F, Newell J, John MC, et al. Pathological correlates of late drug-eluting stent thrombosis: strut coverage as a marker of endothelialization. Circulation 2007;115:2435–41.CrossrefPubMedGoogle Scholar

  • [41]

    Otsuka F, Nakano M, Ladich E, Kolodgie FD, Virmani R. Pathologic etiologies of late and very late stent thrombosis following first-generation drug-eluting stent placement. Thromb 2012;2012:1–16.CrossrefGoogle Scholar

  • [42]

    Jimenez JM, Prasad V, Yu MD, Kampmeyer CP, Kaakour A, Wang P, et al. Macro- and microscale variables regulate stent haemodynamics, fibrin deposition and thrombomodulin expression. J R Soc Interface 2014;11:1–13.Google Scholar

  • [43]

    Jiménez JM, Davies PF. Hemodynamically driven stent strut design. Ann Biomed Eng 2009;37:1483–94.PubMedCrossrefGoogle Scholar

  • [44]

    Chiastra C, Migliavacca F, Martinez MA, Malve M. On the necessity of modelling fluid-structure interaction for stented coronary arteries. J Mech Behav Biomed Mater 2014;34:217–30.PubMedCrossrefGoogle Scholar

  • [45]

    Nakazawa G, Yazdani SK, Finn AV, Vorpahl M, Kolodgie FD, Virmani R. Pathological findings at bifurcation lesions: the impact of flow distribution on atherosclerosis and arterial healing after stent implantation. J Am Coll Cardiol 2010;55:1679–87.PubMedCrossrefGoogle Scholar

  • [46]

    Pant S, Bressloff NW, Forrester AIJ, Curzen N. The influence of strut-connectors in stented vessels: a comparison of pulsatile flow through five coronary stents. Ann Biomed Eng 2010;38:1893–907.CrossrefPubMedGoogle Scholar

  • [47]

    Koskinas KC, Chatzizisis YS, Antoniadis AP, Giannoglou GD. Role of endothelial shear stress in stent restenosis and thrombosis. J Am Coll Cardiol 2012;59:1337–49.PubMedCrossrefGoogle Scholar

  • [48]

    Food and Drug Administration. FDA Investigating Increased Rate of Major Adverse Cardiac Events Observed in Patients Receiving Abbott Vascular’s Absorb GT1 Bioresorbable Vascular Scaffold (BVS) – Letter to Health Care Providers 2017.Google Scholar

  • [49]

    Buccheri D, Caramanno G, Geraci S, Cortese B. Should we reconsider dual antiplatelet therapy duration following bioresorbable scaffold angioplasty? J Thorac Dis 2017;9:417–8.PubMedCrossrefGoogle Scholar

  • [50]

    Fajadet J, Haude M, Joner M, Koolen J, Lee M, Tolg R, et al. Magmaris preliminary recommendation upon commercial launch: a consensus from the expert panel on 14 April 2016. EuroIntervention 2016;12:828–33.CrossrefGoogle Scholar

  • [51]

    Stewart SFC, Hariharan P, Paterson EG, Burgreen GW, Reddy VR, Day SW, et al. Results of FDA’s first interlaboratory computational study of a nozzle with a sudden contraction and conical diffusor. Cardiovasc Eng Technol 2013;4:374–91.CrossrefGoogle Scholar

  • [52]

    Stiehm M, Wüstenhagen C, Siewert S, Grabow N, Schmitz KP. Numerical simulation of pulsatile flow through a coronary nozzle model based on FDA’s benchmark geometry. Curr Dir Biomed Eng 2017;3:775–8.Google Scholar

About the article

Corresponding author: Dr.-Ing. Michael Stiehm, Institute for ImplantatTechnology and Biomaterials e.V., Friedrich-Barnewitz-Str. 4, 18119 Rostock-Warnemünde, Germany, Phone: +49 (0)381-54345 604, Fax: +49-(0)381-54345-502

Received: 2017-06-26

Accepted: 2018-05-18

Published Online: 2018-06-22

Published in Print: 2019-05-27

Author Statement

Research funding: The authors gratefully acknowledge the partial financial support by the European Regional Development Fund (ERDF) and the European Social Fund (ESF) within the collaborative research between economy and science of the state Mecklenburg-Vorpommern.

Conflict of interest: The authors have no conflict of interest.

Informed consent: Informed consent is not applicable.

Ethical approval: The conducted research is not related to either human or animals use.

Citation Information: Biomedical Engineering / Biomedizinische Technik, Volume 64, Issue 3, Pages 251–262, ISSN (Online) 1862-278X, ISSN (Print) 0013-5585, DOI: https://doi.org/10.1515/bmt-2017-0101.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Christina Iosif and Alessandra Biondi
Expert Review of Medical Devices, 2019, Volume 16, Number 3, Page 237

Comments (0)

Please log in or register to comment.
Log in