Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Merhof, Dorit

Biomedical Engineering / Biomedizinische Technik

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering and the German Society of Biomaterials

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Habibović, Pamela / Haueisen, Jens / Jahnen-Dechent, Wilhelm / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Leonhardt, Steffen / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Boenick, Ulrich / Jaramaz, Branislav / Kraft, Marc / Lenarz, Thomas / Lenthe, Harry / Lo, Benny / Mainardi, Luca / Micera, Silvestro / Penzel, Thomas / Robitzki, Andrea A. / Schaeffter, Tobias / Snedeker, Jess G. / Sörnmo, Leif / Sugano, Nobuhiko / Werner, Jürgen /


IMPACT FACTOR 2018: 1.007
5-year IMPACT FACTOR: 1.390

CiteScore 2018: 1.24

SCImago Journal Rank (SJR) 2018: 0.282
Source Normalized Impact per Paper (SNIP) 2018: 0.831

Online
ISSN
1862-278X
See all formats and pricing
More options …
Volume 64, Issue 5

Issues

Volume 57 (2012)

Optimization of the proposed hybrid denoising technique to overcome over-filtering issue

Sumit Kushwaha
  • Corresponding author
  • Electronics Engineering Department, Kamla Nehru Institute of Technology, Sultanpur 228118, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rabindra Kumar Singh
  • Electronics Engineering Department, Kamla Nehru Institute of Technology, Sultanpur 228118, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-04-12 | DOI: https://doi.org/10.1515/bmt-2018-0101

Abstract

Image denoising has become a crucial task in medical ultrasound (US) imaging due to the presence of speckle or multiplicative noise and additive Gaussian noise. Recently, several denoising techniques such as adaptive wavelet thresholding & joint bilateral (AWT + JB) filter, adaptive fuzzy switching weighted mean (AFSWM) filter and median patch-based locally optimal Wiener (MPBLOW) filter have been proposed to remove the speckle noise. However, these denoising techniques were found to remove noise along with the essential parts of the actual image data which is known as over-filtering. Thereby, it reduces the accuracy of the recognition process. In this paper, a new hybrid filter technique is proposed by combining anisotropic diffusion (AD) with Butterworth band pass filter to overcome over-filtering of the image. In addition, the performance of the proposed hybrid filter and its design parameters are enhanced using the particle swarm optimization (PSO) algorithm. The simulation results show that the proposed filtering technique achieves a better denoising performance when compared with other filtering techniques in terms of peak signal-to-noise ratio (PSNR), signal-to-noise ratio (SNR), structural similarity index (SSIM) and edge preservation index (EPI). Moreover, the results validated that the proposed filtering technique using PSO achieves effective performance than using the harmony search algorithm (HSA) and other filtering techniques.

Keywords: anisotropic diffusion; Butterworth band pass Filter; HAS; PSO; US imaging

References

  • [1]

    Ramos-Llordén G, Vegas-Sánchez-Ferrero G, Martin-Fernandez M, Alberola-López C, Aja-Fernández S. Anisotropic diffusion filter with memory based on speckle statistics for ultrasound images. IEEE Trans Image Process 2015;24:345–58.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [2]

    Sivakumar R, Gayathri MK, Nedumaran D. Speckle filtering of ultrasound B-scan images – a comparative study between spatial and diffusion filters. Int Conf Open Systems (ICOS) 2010:80–5.Google Scholar

  • [3]

    Ramos-Llordén G, Vegas-Sánchez-Ferrero G, Aja-Fernández S, Martín-Fernández M, Alberola-López C. Fast anisotropic speckle filter for ultrasound medical images. In: Roa Romero LM, editor. XIII Mediterranean Conference on Medical and Biological Engineering and Computing, Vol 41. Cham: IFMBE Proceedings Springer; 2013:253–6.Google Scholar

  • [4]

    Bhateja V, Singh G, Srivastava A. A novel weighted diffusion filtering approach for speckle suppression in ultrasound images. Proceedings of the International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2013:459–66.Google Scholar

  • [5]

    Gupta D, Anand RS, Tyagi B. Speckle filtering of ultrasound images using a modified non-linear diffusion model in non-subsampled shearlet domain. IET Image Process 2014;9:107–17.Web of ScienceGoogle Scholar

  • [6]

    Coupé P, Hellier P, Kervrann C, Barillot C. Nonlocal means-based speckle filtering for ultrasound images. IEEE Trans Image process 2009;18:2221–9.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [7]

    Yang J, Fan J, Ai D. Local statistics and non-local mean filter for speckle noise reduction in medical ultrasound image. Neurocomputing 2016;195:88–95.CrossrefWeb of ScienceGoogle Scholar

  • [8]

    Ambrosanio M, Baselice F, Ferraioli G, Pascazio V. Ultrasound despeckling based on non local means. EMBEC & NBC 2017:109–12.Google Scholar

  • [9]

    Zhang X, Cheng S, Ding H, Wu H. Ultrasound medical image denoising based on multi-direction median filter. Information Technology in Medicine and Education (ITME), IEEE 8th International Conference 2016:835–9.Google Scholar

  • [10]

    Kazubek M. Wavelet domain image denoising by thresholding and Wiener filtering. IEEE Signal Process Lett 2003;10:324–6.CrossrefGoogle Scholar

  • [11]

    Farzana E, Tanzid M, Mohsin KM, Bhuiyan MIH, Hossain S. Adaptive bilateral filtering for despeckling of medical ultrasound images. IEEE Conf TENCON 2010:1728–33.Google Scholar

  • [12]

    Esakkirajan S, Vimalraj CT, Muhammed R, Subramanian G. Adaptive wavelet packet-based de-speckling of ultrasound images with bilateral filter. Ultrasound Med Biol 2013;39:2463–76.CrossrefWeb of SciencePubMedGoogle Scholar

  • [13]

    Vanithamani R, Umamaheswari G. Wavelet based despeckling of medical ultrasound images with bilateral filter. IEEE Int Conf TENCON 2011:389–93.Google Scholar

  • [14]

    Kishore PVV, Sastry ASCS, Kartheek A, Mahatha SH. Block based thresholding in wavelet domain for denoising ultrasound medical images. International Conference on Signal Processing and Communication Engineering Systems (SPACES) 2015:265–9.Google Scholar

  • [15]

    Yu Y, Acton ST. Speckle reducing anisotropic diffusion. IEEE Trans Image Process 2002;11:1260–70.Web of SciencePubMedCrossrefGoogle Scholar

  • [16]

    Yu Y, Molloy JA, Acton ST. Three-dimensional speckle reducing anisotropic diffusion. Conference Record of the Thirty-Seventh Asilomar Conference on In Signals, Systems and Computers, Vol. 2, 2003:1987–91.Google Scholar

  • [17]

    Krissian K, Westin CF, Kikinis R, Vosburgh KG. Oriented speckle reducing anisotropic diffusion. IEEE Trans Image Process 2007;6:1412–24.Web of ScienceGoogle Scholar

  • [18]

    Bini AA, Bhat MS. Despeckling low SNR, low contrast ultrasound images via anisotropic level set diffusion. Multidim Syst Signal Process 2014;25:41–65.CrossrefWeb of ScienceGoogle Scholar

  • [19]

    Guleryuz OG. A nonlinear loop filter for quantization noise removal in hybrid video compression. IEEE International Conference on ICIP 2005.Google Scholar

  • [20]

    Chithra MS. Bayesian denoising of ultrasound images using heavy-tailed levy distribution. IET Image Process 2014;9:338–45.Web of ScienceGoogle Scholar

  • [21]

    Babu JJJ, Sudha GF. Non-subsampled contourlet transform based image denoising in ultrasound thyroid images using adaptive binary morphological operations. IET Comput Vis 2014;8:718–28.Web of ScienceCrossrefGoogle Scholar

  • [22]

    Fu X, Wang Y, Chen L, Dai Y. Quantum-inspired hybrid medical ultrasound images despeckling method. Electronics Lett 2015;51:321–3.Web of ScienceCrossrefGoogle Scholar

  • [23]

    Kang J, Lee JY, Yoo Y. A new feature-enhanced speckle reduction method based on multiscale analysis for ultrasound B-mode imaging. IEEE Trans Biomed Eng 2016;63:1178–91.Web of ScienceCrossrefPubMedGoogle Scholar

  • [24]

    Gai S, Zhang B, Yang C, Yu L. Speckle noise reduction in medical ultrasound image using monogenic wavelet and Laplace mixture distribution. ELSEVIER Digital Signal Process 2018;72:192–207.CrossrefGoogle Scholar

  • [25]

    Baselice F, Ferraioli G, Pascazio V, Schirinzi G. Enhanced Wiener filter for ultrasound image denoising. EMBEC & NBC 2017:65–8.Google Scholar

  • [26]

    Tay PC, Garson CD, Acton ST, Hossack JA. Ultrasound despeckling for contrast enhancement. IEEE Trans Image Process 2010;19:1847–60.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [27]

    Kushwaha S. An efficient filtering approach for speckle reduction in ultrasound images. Biomed Pharmacol J 2017;10: 1355–67.CrossrefGoogle Scholar

  • [28]

    Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 1990;12:629–39.CrossrefGoogle Scholar

  • [29]

    Developing a Wildlife Enterprise – Wildlife Basics. Available online at http://forestandrange.org/modules/Wildlifeenterprise/Wildlife_Basics/Wildlife_Concepts/Edges_and_Contrast.html.

  • [30]

    Iheme LO. Frequency Domain band pass filtering for image processing. Electrical and Electronic Engineering Department 583 (Digital Image Processing). Eastern Mediterranean University; 2011.Google Scholar

  • [31]

    Kennedy J, Eberhart R. Particle swarm optimization. Proceedings IEEE International Conference Neural Networks 1995:4.Google Scholar

  • [32]

    Poli R, Kennedy J, Blackwell T. Particle swarm optimization. Swarm intelligence 2007;1:33–57.CrossrefGoogle Scholar

  • [33]

    Pal A, Singh SB, Deep K. Use of particle swarm optimization algorithm for solving integer and mixed integer optimization problems. Int J Comput Sci Commun Technol 2011;4:663–7.Google Scholar

  • [34]

    A Gallery of High-Resolution, Ultrasound, Color Doppler & 3D Images – Liver. Available online at http://www.ultrasound-images.com/liver/.

  • [35]

    Neeru N, Kau L. A new hybrid filtering technique based on neighboring pixels to remove impulse noise from digital images. International Journal of Signal Processing, Image Processing and Pattern Recognition 2016;9:401–18.CrossrefGoogle Scholar

  • [36]

    Bibina VC, Viswasom S. Adaptive wavelet thresholding & joint bilateral filtering for image denoising. IEEE International Conference on INDICON 2012:1100–4.Google Scholar

  • [37]

    Wang Y, Wang J, Song X, Han L. An Efficient adaptive fuzzy switching weighted mean filter for salt-and-pepper noise removal. IEEE Signal Process Lett 2016;23:1582–6.Web of ScienceCrossrefGoogle Scholar

  • [38]

    Cao M, Li S, Wang R, Li N. Interferometric phase denoising by median patch-based locally optimal wiener filter. IEEE Geosci Remote Sens Lett 2015;12:1730–4.Web of ScienceCrossrefGoogle Scholar

  • [39]

    Yang XS. Harmony search as a metaheuristic algorithm. music-inspired harmony search algorithm: theory and applications, Studies Comput Intelligence 2009;191:1–14.Google Scholar

About the article

Received: 2018-06-05

Accepted: 2018-10-18

Published Online: 2019-04-12

Published in Print: 2019-09-25


Author Statement

Research funding: Authors state no funding involved.

Conflict of interest: Authors state no conflict of interest.

Informed consent: Informed consent is not applicable.

Ethical approval: The conducted research is not related to either human or animal use.


Citation Information: Biomedical Engineering / Biomedizinische Technik, Volume 64, Issue 5, Pages 601–618, ISSN (Online) 1862-278X, ISSN (Print) 0013-5585, DOI: https://doi.org/10.1515/bmt-2018-0101.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in