Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Merhof, Dorit

Biomedical Engineering / Biomedizinische Technik

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering and the German Society of Biomaterials

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Habibović, Pamela / Haueisen, Jens / Jahnen-Dechent, Wilhelm / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Leonhardt, Steffen / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Boenick, Ulrich / Jaramaz, Branislav / Kraft, Marc / Lenarz, Thomas / Lenthe, Harry / Lo, Benny / Mainardi, Luca / Micera, Silvestro / Penzel, Thomas / Robitzki, Andrea A. / Schaeffter, Tobias / Snedeker, Jess G. / Sörnmo, Leif / Sugano, Nobuhiko / Werner, Jürgen /


IMPACT FACTOR 2018: 1.007
5-year IMPACT FACTOR: 1.390

CiteScore 2018: 1.24

SCImago Journal Rank (SJR) 2018: 0.282
Source Normalized Impact per Paper (SNIP) 2018: 0.831

Online
ISSN
1862-278X
See all formats and pricing
More options …
Volume 64, Issue 6

Issues

Volume 57 (2012)

A step forward in the quest for a mobile EEG-designed epoch for psychophysiological studies

Sebastián A. Balart-Sánchez
  • Instituto de Neurociencias, CUCBA, Universidad de Guadalajara, Francisco de Quevedo 180, Arcos Vallarta, C.P. 44130, Guadalajara, Jalisco, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hugo Vélez-Pérez
  • Departamento de Ciencias Computacionales, CUCEI, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, esq. Calzada Olímpica, C.P. 44430, Guadalajara, Jalisco, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sergio Rivera-Tello
  • Instituto de Neurociencias, CUCBA, Universidad de Guadalajara, Francisco de Quevedo 180, Arcos Vallarta, C.P. 44130, Guadalajara, Jalisco, Mexico
  • Departamento de Ciencias Computacionales, CUCEI, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, esq. Calzada Olímpica, C.P. 44430, Guadalajara, Jalisco, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Fabiola R. Gómez Velázquez
  • Instituto de Neurociencias, CUCBA, Universidad de Guadalajara, Francisco de Quevedo 180, Arcos Vallarta, C.P. 44130, Guadalajara, Jalisco, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrés A. González-Garrido
  • Instituto de Neurociencias, CUCBA, Universidad de Guadalajara, Francisco de Quevedo 180, Arcos Vallarta, C.P. 44130, Guadalajara, Jalisco, Mexico
  • O.P.D. Hospital Civil de Guadalajara, Salvador Quevedo y Zubieta 876, Independencia Oriente, C.P. 44340, Guadalajara, Jalisco, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rebeca Romo-Vázquez
  • Corresponding author
  • Departamento de Ciencias Computacionales, CUCEI, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, esq. Calzada Olímpica, C.P. 44430, Guadalajara, Jalisco, Mexico, E-mail:
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-07-19 | DOI: https://doi.org/10.1515/bmt-2017-0189

Abstract

The aim of this study was to compare a reconfigurable mobile electroencephalography (EEG) system (M-EMOTIV) based on the Emotiv Epoc® (which has the ability to record up to 14 electrode sites in the 10/20 International System) and a commercial, clinical-grade EEG system (Neuronic MEDICID-05®), and then validate the rationale and accuracy of recordings obtained with the prototype proposed. In this approach, an Emotiv Epoc® was modified to enable it to record in the parieto-central area. All subjects (15 healthy individuals) performed a visual oddball task while connected to both devices to obtain electrophysiological data and behavioral responses for comparative analysis. A Pearson’s correlation analysis revealed a good between-devices correlation with respect to electrophysiological measures. The present study not only corroborates previous reports on the ability of the Emotiv Epoc® to suitably record EEG data but presents an alternative device that allows the study of a wide range of psychophysiological experiments with simultaneous behavioral and mobile EEG recordings.

Keywords: Emotiv Epoc; ERP; psychophysiology; visual oddball; wireless EEG

References

  • [1]

    De Vos M, Debener S. Mobile EEG: towards brain activity monitoring during natural action and cognition. Int J Psychophysiol 2014;91:1–2.Web of ScienceCrossrefPubMedGoogle Scholar

  • [2]

    Kranczioch C, Zich C, Schierholz I, Sterr A. Mobile EEG and its potential to promote the theory and application of imagery-based motor rehabilitation. Int J Psychophysiol 2014;91:10–5.CrossrefWeb of SciencePubMedGoogle Scholar

  • [3]

    Lin C, Ko L, Chang M, Duann J, Chen J, Su T, et al. Review of wireless and wearable electroencephalogram systems and brain-computer interface – a mini review. Gerontology 2009;56:112–9.PubMedGoogle Scholar

  • [4]

    Stopczynski A, Stahlhut C, Petersen MK, Larsen JE, Jensen CF, Ivanova MG, et al. Smartphones as pocketable labs: visions for mobile brain imaging and neurofeedback. Int J Psychophysiol 2014;91:10–5.Web of ScienceGoogle Scholar

  • [5]

    Kaplan S. The restorative benefits of nature: toward an integrative framework. J Environ Psychol 1995;15:169–82.CrossrefGoogle Scholar

  • [6]

    Staats H. Restorative environments. In: Clayton S, editor. The Oxford Handbook of Environmental and Conservation Psychology. Oxford, UK: Oxford University Press, 2012:445–58.Google Scholar

  • [7]

    Badcock NA, Preece KA, de Wit B, Glenn K, Fieder N, Thie J, et al. Validation of the Emotiv Epoc EEG system for research quality auditory event-related potentials in children. Peer J 2015;3:e907.CrossrefGoogle Scholar

  • [8]

    De Lissa P, Sörensen S, Badcock N, Thie J, McArthur G. Measuring the face-sensitive N170 with a gaming EEG system: a validation study. J Neurosci Methods 2015;253:47–54.CrossrefWeb of SciencePubMedGoogle Scholar

  • [9]

    De Vos M, Gandras K, Debener S. Towards a truly mobile auditory brain-computer interface: exploring the P300 to take away. Psychophysiology 2014;91:46–53.Web of ScienceCrossrefGoogle Scholar

  • [10]

    De Vos M, Kroesen M, Emkes R, Debener S. P300 speller BCI with a mobile EEG system: comparison to a traditional amplifier. J Neural Eng 2014;11:8.Web of ScienceGoogle Scholar

  • [11]

    Debener S, Minow F, Emkes R, Gandras K, De Vos M. How about taking a low-cost, small, and wireless EEG for a walk? Psychophysiology 2012;49:1449–53.Web of ScienceGoogle Scholar

  • [12]

    Badcock NA, Mousikou P, Mahajan Y, de Lissa P, Thie J, McArthur G. Validation of the Emotiv Epoc EEG gaming system for measurement research quality auditory ERPs. Peer J 2013;1:e38.CrossrefGoogle Scholar

  • [13]

    Duvinage M, Castermans T, Patietau M, Hoellinger T, Cheron G, Dutoit T. Performance of the Emotiv Epoc headset for P300-based applications. Biomed Eng Online 2013;12:56.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [14]

    Ries AJ, Touryan J, Vettel J, McDowell K, Hairston WD. A comparison of electroencephalography signals acquired from conventional and mobile systems. J Neurosci Neuroeng 2014;3:10–20.CrossrefGoogle Scholar

  • [15]

    Tello RM, Müller SM, Bastos-Filho T, Ferreira A. Comparison between wire and wireless EEG acquisition systems based on SSVEP in an independent-BCI. Conf Proc IEEE Eng Med Biol Soc 2014;2014:22–5.Google Scholar

  • [16]

    Barham MP, Clark GM, Hayden MJ, Enticott PG, ConduitR, LumJAG. Acquiring research-grade ERPs on a shoestring budget: a comparison of a modified Emotiv and commercial SynAmps EEG system. Psychophysiology 2017;54:1393–404.CrossrefWeb of SciencePubMedGoogle Scholar

  • [17]

    Mayaud L, Congedo M, Van Laghenhove A, Orlikowski D, Figére M, Azabou E, et al. A comparison of recording modalities of P300 event-related potentials (ERP) for brain-computer interface (BCI) paradigm. Neurophysiologie Clinique/Clin Neurophysiol 2013;43:217–27.CrossrefWeb of ScienceGoogle Scholar

  • [18]

    Jia S, Tsang YK, Huang J, Chen HC. Processing Cantonese lexical tones: evidence from oddball paradigms. Neuroscience 2015;305:351–60.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [19]

    Verleger R, Grauhan N, Smigasiewicz K. Go and no-go P3 with rare and frequent stimuli in oddball tasks: a study comparing key-pressing with counting. Int J Psychophysiol 2016;110:128–36.Web of ScienceCrossrefPubMedGoogle Scholar

  • [20]

    Harner P, Sannit T. A review of the international ten-twenty system of electrode placement. Quincy, MA: Grass Instrument Co., 1974.Google Scholar

  • [21]

    Pierce J. PsyhoPy-Psychophysics software in Python. J Neurosci Methods 2007;162:8–13.PubMedCrossrefGoogle Scholar

  • [22]

    Thie J. A wireless marker system to enable evoked potential recordings using a wireless EEG system (EPOC) and a portable computer. Peer J PrePrints 2013;1:e32v1.Google Scholar

  • [23]

    Delorme A, Makeig S. EEGLAB: an open source toolbox analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 2013;134:9–21.Google Scholar

  • [24]

    Jeffreys H. Theory of Probability, 3rd ed. Oxford Classic Texts in the Physical Sciences. Oxford University Press, Oxford, UK, 1961.Google Scholar

  • [25]

    Cicchetti DV. Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol Assess 1994;6:284.CrossrefGoogle Scholar

  • [26]

    Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropract Med 2016;15:155–63.CrossrefGoogle Scholar

  • [27]

    Hairston WD. Accounting for timing drift and variability in contemporary electroencephalography (EEG) systems. Report ARL-TR.5945. Aberdeen Proving Ground, MD: US Army Research Laboratory, 2012.Google Scholar

  • [28]

    Barry RJ, Clarke AR, McCarthy R, Selikowitz M, Brown CR, Heaven PCL. Event-related potentials in adults with attention-deficit/hyperactivity disorder: an investigation using an inter-modal auditory/visual oddball task. Int J Psychophysiol 2009;71:124–31.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [29]

    Brown CR, Clarke AR, Barry RJ. Auditory processing in an inter-modal oddball task: effects of a combined auditory/visual standard on auditory target ERPs. Int J Psychophysiol 2007;65:122–31.Web of ScienceCrossrefGoogle Scholar

  • [30]

    Collier AK, Wolf DH, Valdez JN, Turetsky BI, Elliott MA, Gur RE, et al. Comparison of auditory and visual oddball fMRI in schizophrenia. Schizophr Res 2014;158:183–8.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [31]

    McDowell K, Lin C, Oie K, Jung T, Gordon S, Withaker K, et al. Real-world neuroimaging technologies. IEEE Access 2013;1:131–49.Web of ScienceCrossrefGoogle Scholar

  • [32]

    Hairston WD, Whitaker KW, Ries AJ, Vettel JM, Bradford JC, Kerick SE, et al. Usability of four commercial-oriented EEG Systems. J Neural Eng 2014;11:046018.CrossrefGoogle Scholar

  • [33]

    Duvinage M, Castermans T, Dutoit T. A P300-based quantitative comparison between the emotive Epoc headset and medical EEG device. Proc of the 9th IASTED Int Conf Biomed Eng, BioMed 2012.Google Scholar

  • [34]

    Parks AC, Moore RD, Wu CT, Broglio SP, Covassin T, Hillman CH, et al. The association between a history of concussion and variability in behavioral and neuroelectric indices of cognition. Int J Psychophysiol 2015;98:426–34.Web of SciencePubMedCrossrefGoogle Scholar

  • [35]

    Johnstone SJ, Barry RJ, Clarke AR. Ten years on: a follow-up review of ERP research in attention-deficit/hyperactivity disorder. Clin Neurophysiol 2013;124:644–57.Web of SciencePubMedCrossrefGoogle Scholar

  • [36]

    Jongsma ML, van Rijn CM, Gerrits NJ, Eichele T, Steenbergen B, Maes JH, et al. The learning-oddball paradigm: data of 24 separate individuals illustrate its potential usefulness as a new clinical tool. Clin Neurophysiol 2013;124:514–21.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [37]

    Warbrick T, Reske M, Shah NJ. Do EEG paradigms work in fMRI? Varying task demands in the visual oddball paradigm: implications for task design and results interpretation. NeuroImage 2013;77:177–85.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [38]

    Park J, Fairweather M, Donaldson D. Making the case for mobile cognition: EEG and sports performance. J Neurosci Biobehav Rev 2015;52:117–30.CrossrefWeb of ScienceGoogle Scholar

  • [39]

    Askamp J, Van Putten JA. Mobile EEG in epilepsy. Int J Psychophysiol 2014;91:30–5.CrossrefPubMedWeb of ScienceGoogle Scholar

About the article

Received: 2017-10-28

Accepted: 2019-03-01

Published Online: 2019-07-19

Published in Print: 2019-12-18


Author statement

Ethical approval: All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments, or comparable ethical standards.

Informed consent: Informed consent was obtained from all participants included in the study.

Disclosure of interest: The authors declare that they have no conflict of interest concerning the contents of this article.


Citation Information: Biomedical Engineering / Biomedizinische Technik, Volume 64, Issue 6, Pages 655–667, ISSN (Online) 1862-278X, ISSN (Print) 0013-5585, DOI: https://doi.org/10.1515/bmt-2017-0189.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in