Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Merhof, Dorit

Biomedical Engineering / Biomedizinische Technik

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering and the German Society of Biomaterials

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Habibović, Pamela / Haueisen, Jens / Jahnen-Dechent, Wilhelm / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Leonhardt, Steffen / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Boenick, Ulrich / Jaramaz, Branislav / Kraft, Marc / Lenarz, Thomas / Lenthe, Harry / Lo, Benny / Mainardi, Luca / Micera, Silvestro / Penzel, Thomas / Robitzki, Andrea A. / Schaeffter, Tobias / Snedeker, Jess G. / Sörnmo, Leif / Sugano, Nobuhiko / Werner, Jürgen /

IMPACT FACTOR 2018: 1.007
5-year IMPACT FACTOR: 1.390

CiteScore 2018: 1.24

SCImago Journal Rank (SJR) 2018: 0.282
Source Normalized Impact per Paper (SNIP) 2018: 0.831

See all formats and pricing
More options …
Volume 64, Issue 6


Volume 57 (2012)

Sonographic visibility of cannulas using convex ultrasound transducers

Stephen Rumble
  • Faculty of Electrical Engineering and Information Technology, Chair of Medical Engineering, Ruhr-University Bochum, 44801 Bochum, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Georg Schmitz
  • Faculty of Electrical Engineering and Information Technology, Chair of Medical Engineering, Ruhr-University Bochum, 44801 Bochum, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stefanie Dencks
  • Corresponding author
  • Faculty of Electrical Engineering and Information Technology, Chair of Medical Engineering, Ruhr-University Bochum, 44801 Bochum, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-09-17 | DOI: https://doi.org/10.1515/bmt-2018-0174


The key for safe ultrasound (US)-guided punctures is a good visibility of the cannula. When using convex transducers for deep punctures, the incident angle between US beam and cannula varies along the cannula leading to a complex visibility pattern. Here, we present a method to systematically investigate the visibility throughout the US image. For this, different objective criteria were defined and applied to measurement series with varying puncture angles and depths of the cannula. It is shown that the visibility not only depends on the puncture angle but also on the location of the cannula in the US image when using convex transducers. In some image regions, an unexpected good visibility was observed even for steep puncture angles. The systematic evaluation of the cannula visibility is of fundamental interest to sensitise physicians to the handling of convex transducers and to evaluate new techniques for further improvement.

Keywords: cannulas; incident angles; needles; punctures; puncture angles; puncture depth; safety


  • [1]

    Brookes J, Sondekoppam R, Armstrong K, Uppal V, Dhir S, Terlecki M, et al. Comparative evaluation of the visibility and block characteristics of a stimulating needle and catheter vs an echogenic needle and catheter for sciatic nerve block with a low-frequency ultrasound probe. Br J Anaesth 2015;115:912–9.Web of ScienceCrossrefPubMedGoogle Scholar

  • [2]

    Brodsky JB, Mariano ER. Regional anaesthesia in the obese patient: lost landmarks and evolving ultrasound guidance. Best Pract Res Clin Anaesthesiol 2011;25:61–72.CrossrefPubMedGoogle Scholar

  • [3]

    Sites BD, Chan VW, Neal JM, Weller R, Grau T, Koscielniak-Nielsen ZJ. The American Society of Regional Anesthesia and Pain Medicine and the European Society of Regional Anaesthesia and Pain Therapy Joint Committee recommendations for education and training in ultrasound-guided regional anesthesia. Reg Anesth Pain Med 2009;34:40–6.CrossrefPubMedGoogle Scholar

  • [4]

    Sites BD, Brull R, Chan VW, Spence BC, Gallagher J, Beach ML. Artifacts and pitfall errors associated with ultrasound-guided regional anesthesia. Part I: understanding the basic principles of ultrasound physics and machine operations. Reg Anesth Pain Med 2007;32:412–8.PubMedGoogle Scholar

  • [5]

    Reusz G, Sarkany P, Gal J, Csomos A. Needle-related ultrasound artifacts and their importance in anaesthetic practice. Br J Anaesth 2014;112:794–802.CrossrefWeb of SciencePubMedGoogle Scholar

  • [6]

    Mariano ER, Marshall ZJ, Urman RD, Kaye AD. Ultrasound and its evolution in perioperative regional anesthesia and analgesia. Best Pract Res Clin Anaesthesiol 2014;28:29–39.PubMedCrossrefGoogle Scholar

  • [7]

    Hopkins RE, Bradley M. In-vitro visualization of biopsy needles with ultrasound: a comparative study of standard and echogenic needles using an ultrasound phantom. Clin Radiol 2001;56:499–502.PubMedCrossrefGoogle Scholar

  • [8]

    Schafhalter-Zoppoth I, McCulloch C, Gray A. Ultrasound visibility of needles used for regional nerve block: an in vitro study. Reg Anesth Pain Med 2004;29:480–8.Google Scholar

  • [9]

    de Korte C, Weijers G, Vriezema D, Keereweer A, Thijssen J, Hansen H. Quantitative analysis of coated needles for ultrasound guided intervention. Orlando, USA: IEEE Int Ultrason Symp (IUS); 2011, pp. 1571–4. DOI: 10.1109/ULTSYM.2011.0390.Google Scholar

  • [10]

    Deam RK, Kluger R, Barrington MJ, McCutcheon CA. Investigation of a new echogenic needle for use with ultrasound peripheral nerve blocks. Anaesth Intens Care 2007;35:582–6.Web of ScienceCrossrefGoogle Scholar

  • [11]

    Maecken T, Zenz M, Grau T. Ultrasound characteristics of needles for regional anesthesia. Reg Anesth Pain Med 2007;32:440–7.CrossrefPubMedGoogle Scholar

  • [12]

    Nakagawa K, Kamiya T, Arakawa K, Akiyama S, Sakai K.Objective and subjective comparison of the visibility of three echogenic needles and a nonechogenic needle on older ultrasound devices. Acta Anaesthesiol Taiwan 2015;53: 1–6.CrossrefGoogle Scholar

  • [13]

    Culp WC, McCowan TC, Goertzen TC, Habbe TG, Hummel MM, LeVeen RF, et al. Relative ultrasonographic echogenicity of standard, dimpled, and polymeric-coated needles. J Vasc Interv Radiol 2000;11:351–8.PubMedCrossrefGoogle Scholar

  • [14]

    Sviggum HP, Ahn K, Dilger JA, Smith HM. Needle echogenicity in sonographically guided regional anesthesia. J Ultrasound Med 2013;32:143–8.CrossrefPubMedGoogle Scholar

  • [15]

    Bergin D, Pappas JN, Hwang JJ, Shearfor DH, Paulson EK. Echogenic polymer coating: does it improve needle visualization in sonographically guided biopsy? Am J Roentgenol 2002;178:1188–90.CrossrefGoogle Scholar

  • [16]

    Jandzinski DI, Carson N, Davis D, Rubens DJ, Voci SL, Gottlieb RH. Treated needles do they facilitate sonographically guided biopsies? J Ultrasound Med 2003;22:1233–7.CrossrefPubMedGoogle Scholar

  • [17]

    Nichols K, Wright LB, Spencer T, Culp WC. Changes in ultrasonographic echogenicity and visibility of needles with changes in angles of insonation. J Vasc Intervent Radiol 2003;14:1553–7.CrossrefGoogle Scholar

  • [18]

    Hebard S, Hocking G. Echogenic technology can improve needle visibility during ultrasound-guided regional anesthesia. Reg Anesth Pain Med 2011;36:185–9.CrossrefPubMedGoogle Scholar

  • [19]

    Bradley MJ. An in-vitro study to understand successful free-hand ultrasound guided intervention. Clin Radiol 2001;56:495–8.PubMedCrossrefGoogle Scholar

  • [20]

    Nischwitz A, Fischer M, Haberäcker P. Computergrafik und Bildverarbeitung. Wiesbaden: Vieweg; 2007.Google Scholar

  • [21]

    Schwemmer U, Markus CK, Brederlau J, Schuster F, Redel A, Roewer N. Einsatz von Ultraschall zur Durchführung peripherer Nervenblockaden. Ultraschall Med 2009;30:6–24.CrossrefGoogle Scholar

  • [22]

    Chin K, Perlas A, Chan V, Brull R. Needle visualization in ultrasound-guided regional anesthesia: challenges and solutions. Reg Anesth Pain Med 2008;33:532–44.PubMedGoogle Scholar

  • [23]

    Dencks S, Schmitz G. Assessment of the potential of beamforming for needle enhancement in punctures. Taipei, Taiwan: IEEE Int Ultrason Sympos (IUS) 2015, pp. 1–4. DOI: 10.1109/ULTSYM.2015.0301.Google Scholar

  • [24]

    Ting PH, Antonakakis JG. Evidence-based review of ultrasound imaging for regional anesthesia. Semin Anesth Perioper Med Pain 2007;26:218–28.CrossrefGoogle Scholar

  • [25]

    Mariano ER, Brodsky JB. Comparison of procedural times for ultrasound-guided perineural catheter insertion in obese and nonobese patients. J Ultrasound Med 2011;30: 1357–61.Web of ScienceCrossrefPubMedGoogle Scholar

  • [26]

    Tavakoli SM, Keller EJC, Nassiri D, Joseph AE. A novel polymeric coating for enhanced ultrasound imaging of medical devices. Dallas, Texas: Antec; 2001. ISBN 9781587160981.Google Scholar

  • [27]

    Violante MR, Whitbourne RJ, Lanzafame JF, Lydon M. Echogenic coatings. I. STS Biopolymers, Henrietta, NY, 6,106,473; 2000.Google Scholar

  • [28]

    Gottlieb RH, Robinette W, Rubens D, Hartley D, Fultz P, Violante M. Coating agent permits improved visualization of biopsy needles during sonography. Am J Roentgenol 1998;171:1301–02.CrossrefGoogle Scholar

  • [29]

    Munirama S, Joy J, Columb M, Habershaw R, Eisma R, Corner G, et al. A randomised, single-blind technical study comparing the ultrasonic visibility of smooth-surfaced and textured needles in a soft embalmed cadaver model. Anaesthesia 2015;70: 537–42.Web of ScienceCrossrefGoogle Scholar

  • [30]

    Hocking G, Mitchell CH. Optimizing the safety and practice of ultrasound-guided regional anesthesia: the role of echogenic technology. Curr Opin Anaesthesiol 2012;25:603–9.PubMedCrossrefGoogle Scholar

  • [31]

    Feld R, Needleman L, Goldberg BB. Use of a needle-vibrating device and color doppler imaging for sonographically guided invasive procedures. Am J Roentgenol 1997;168:255–6.CrossrefGoogle Scholar

  • [32]

    Beigi P, Rohling R, Salcudean T, Lessoway VA, Ng GC. Needle trajectory and tip localization in real-time 3-D ultrasound using a moving stylus. Ultrasound Med Biol 2015;41: 2057–70.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [33]

    Harmat A, Rohling RN, Salcudean SE. Needle tip localization using stylet vibration. Ultrasound Med Biol 2006;32: 1339–48.CrossrefPubMedGoogle Scholar

  • [34]

    Shubert J, Bell MA. Photoacoustic based visual servoing of needle tips to improve biopsy on obese patients. Washington, DC, USA: IEEE Int Ultrason Sympos; 2017. DOI: 10.1109/ULTSYM.2017.8091815Google Scholar

  • [35]

    Draper KJ, Blake CC, Gowman L, Downey DB, Fenster A. An algorithm for automatic needle localization in ultrasound-guided breast biopsies. Med Phys 2000;27:1971–9.CrossrefPubMedGoogle Scholar

  • [36]

    Uhercik M, Kybic J, Liebgott H, Cachard C. Model fitting using RANSAC for surgical tool localization in 3-D ultrasound images. IEEE Trans Biomed Eng 2010;57:1907–16.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [37]

    Zhao Y, Cachard C, Liebgott H. A new automatically biopsy needle tracking method using 3D ultrasound. Prague, Czech Republic: IEEE Int Ultrason Sympos; 2013. DOI: 10.1109/ULTSYM.2013.0217.Google Scholar

  • [38]

    Zhuang B, Dickie K, Pelissier L. In vivo needle visualization in ultrasound images using tensor-based filtering. Prague, Czech Republic: IEEE Int Ultrason Sympos; 2013. DOI: 10.1109/ULTSYM.2013.0172Google Scholar

  • [39]

    Lin Y, Halmann M, Lin F, Guo J. Method, apparatus and system for enhancing needle visualization in medical ultrasound imaging. Google Patents 2013.Google Scholar

  • [40]

    Ding M, Cardinal HN, Fenster A. Automatic needle segmentation in three-dimensional ultrasound images using two orthogonal two-dimensional image projections. Med Phys 2003;30:222–34.CrossrefPubMedGoogle Scholar

  • [41]

    Hamper UM, Savader BL, Sheth S. Improved needle-tip visualization by color doppler sonography. Am J Roentgenol 1991;156:401–2.CrossrefGoogle Scholar

  • [42]

    Greppi B, Cerofolini M. Method and apparatus for ultrasound imaging of a biopsy needle or the like during an ultrasound imaging examination. Google Patents 2005.Google Scholar

  • [43]

    Baker JA, Soo MS, Mengoni P. Sonographically guided percutaneous interventions of the breast using a steerable ultrasound beam. Am J Roentgenol 1999;172:157–9.CrossrefGoogle Scholar

  • [44]

    Mesurolle B, Bining HJ, El Khoury M, Barhdadi A, Kao E. Contribution of tissue harmonic imaging and frequency compound imaging in interventional breast sonography. J Ultrasound Med 2006;25:845–55.CrossrefPubMedGoogle Scholar

  • [45]

    Su J, Karpiouk A, Wang B, Emelianov S. Photoacoustic imaging of clinical metal needles in tissue. J Biomed Optics 2010;15:021309-6.Web of ScienceGoogle Scholar

  • [46]

    Rotemberg V, Palmeri M, Rosenzweig S, Grant S, Macleod D, Nightingale K. Acoustic radiation force impulse (ARFI) imaging-based needle visualization. Ultrason Imaging 2011;33:1–16.CrossrefPubMedGoogle Scholar

  • [47]

    Daoud M, Abolmaesumi P, You W, Salcudean SE, Rohling RN. Signature-based algorithm for improved needle localization in ultrasound images: a feasibility study. Orlando, FL, USA: IEEE Int Ultrason Sympos; 2011. DOI: 10.1109/ULTSYM.2011.0391Google Scholar

  • [48]

    Zhuang B, Dickie K, Pelissier L. Adaptive spatial compounding for needle visualization. Orlando, FL, USA: IEEE Int Ultrason Sympos (IUS); 2011. DOI: 201110.1109/ULTSYM.2011.6293650.Google Scholar

About the article

Received: 2018-09-03

Accepted: 2019-01-30

Published Online: 2019-09-17

Published in Print: 2019-12-18

Author Statement

Research funding: Authors state no funding involved.

Conflict of interest: Authors state no conflict of interest.

Informed consent: Informed consent is not applicable.

Ethical approval: The conducted research is not related to either human or animal use.

Citation Information: Biomedical Engineering / Biomedizinische Technik, Volume 64, Issue 6, Pages 691–698, ISSN (Online) 1862-278X, ISSN (Print) 0013-5585, DOI: https://doi.org/10.1515/bmt-2018-0174.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in