Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Engineering / Biomedizinische Technik

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering and the German Society of Biomaterials

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Habibović, Pamela / Haueisen, Jens / Jahnen-Dechent, Wilhelm / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Lenarz, Thomas / Leonhardt, Steffen / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Boenick, Ulrich / Jaramaz, Branislav / Kraft, Marc / Lenthe, Harry / Lo, Benny / Mainardi, Luca / Micera, Silvestro / Penzel, Thomas / Robitzki, Andrea A. / Schaeffter, Tobias / Snedeker, Jess G. / Sörnmo, Leif / Sugano, Nobuhiko / Werner, Jürgen /

6 Issues per year


IMPACT FACTOR 2017: 1.096
5-year IMPACT FACTOR: 1.492

CiteScore 2017: 0.48

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.356

Online
ISSN
1862-278X
See all formats and pricing
More options …
Volume 58, Issue 5

Issues

Volume 57 (2012)

Heart valve engineering: decellularized allograft matrices in clinical practice

Anneke Neumann
  • Department of Cardiothoracic, Transplantation and Vascular Surgery, Hanover Medical School, Hanover, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Serghei Cebotari
  • Department of Cardiothoracic, Transplantation and Vascular Surgery, Hanover Medical School, Hanover, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Igor Tudorache
  • Department of Cardiothoracic, Transplantation and Vascular Surgery, Hanover Medical School, Hanover, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Axel Haverich
  • Department of Cardiothoracic, Transplantation and Vascular Surgery, Hanover Medical School, Hanover, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Samir Sarikouch
  • Corresponding author
  • Department of Cardiothoracic, Transplantation and Vascular Surgery, Hanover Medical School, Hanover, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-05-28 | DOI: https://doi.org/10.1515/bmt-2012-0115

Abstract

The purpose of this review is to update the current clinical experience with tissue-engineered, nonseeded, allogenic matrices for pulmonary and aortic valve replacement. Allogenic heart valve replacement using an aortic root homograft was first performed 50 years ago on July 24, 1962, by Donald Ross at Guy’s Hospital, London. Cryopreserved homografts have been the gold standard for many years in selected indications such as for pulmonary valve replacement in congenital heart disease, severe bacterial endocarditis, or for right ventricular outflow tract reconstruction during the Ross pulmonary autograft operation. However, there is evolving evidence that tissue-engineered decellularized homografts may be superior to conventional cryopreserved homografts.

Keywords: allogenic; artificial; heart valve replacement; matrices; scaffolds; tissue engineering

References

  • [1]

    Baraki H, Tudorache I, Braun M, et al. Orthotopic replacement of the aortic valve with decellularized allograft in a sheep model. Biomaterials 2009; 30: 6240–6246.Web of ScienceCrossrefGoogle Scholar

  • [2]

    Bechtel JF, Stierle U, Sievers HH. Fifty-two months’ mean follow-up of decellularized SynerGraft-treated pulmonary valve allografts. J Heart Valve Dis 2008; 17: 98–104; discussion 104.Google Scholar

  • [3]

    Brown JW, Elkins RC, Clarke DR, et al. Performance of the cryovalve SG human decellularized pulmonary valve in 342 patients relative to the conventional cryovalve at a mean follow-up of four years. J Thorac Cardiovasc Surg 2010; 139: 339–348.Web of ScienceGoogle Scholar

  • [4]

    Brown JW, Ruzmetov M, Eltayeb O, Rodefeld MD, Turrentine MW. Performance of SynerGraft decellularized pulmonary homograft in patients undergoing a ross procedure. Ann Thorac Surg 2011; 91: 416–422; discussion 422–413.CrossrefGoogle Scholar

  • [5]

    Burch PT, Kaza AK, Lambert LM, Holubkov R, Shaddy RE, Hawkins JA. Clinical performance of decellularized cryopreserved valved allografts compared with standard allografts in the right ventricular outflow tract. Ann Thorac Surg 2010; 90: 1301–1305; discussion 1306.CrossrefGoogle Scholar

  • [6]

    Cebotari S, Lichtenberg A, Tudorache I, et al. Clinical application of tissue engineered human heart valves using autologous progenitor cells. Circulation 2006; 114: I132–I137.Google Scholar

  • [7]

    Cebotari S, Mertsching H, Kallenbach K, et al. Construction of autologous human heart valves based on an acellular allograft matrix. Circulation 2002; 106: I63–I68.Google Scholar

  • [8]

    Cebotari S, Tudorache I, Ciubotaru A, et al. Use of fresh decellularized allografts for pulmonary valve replacement may reduce the reoperation rate in children and young adults: early report. Circulation 2011; 124: S115–S123.Web of ScienceCrossrefGoogle Scholar

  • [9]

    Cebotari S, Tudorache I, Jaekel T, et al. Detergent decellularization of heart valves for tissue engineering: toxicological effects of residual detergents on human endothelial cells. Artif Organs 2010; 34: 206–210.CrossrefWeb of ScienceGoogle Scholar

  • [10]

    Cicha I, Ruffer A, Cesnjevar R, et al. Early obstruction of decellularized xenogenic valves in pediatric patients: involvement of inflammatory and fibroproliferative processes. Cardiovasc Pathol 2011; 20: 222–231.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [11]

    Da Costa FD, Costa AC, Prestes R, et al. The early and midterm function of decellularized aortic valve allografts. Ann Thorac Surg 2010; 90: 1854–1860.CrossrefWeb of ScienceGoogle Scholar

  • [12]

    Da Costa FD, Dohmen PM, Duarte D, et al. Immunological and echocardiographic evaluation of decellularized versus cryopreserved allografts during the ross operation. Eur J Cardiothorac Surg 2005; 27: 572–578.Google Scholar

  • [13]

    Da Costa FD, Santos LR, Collatusso C, et al. Thirteen years’ experience with the ross operation. J Heart Valve Dis 2009; 18: 84–94.Google Scholar

  • [14]

    Dijkman PE, Driessen-Mol A, Frese L, Hoerstrup SP, Baaijens FP. Decellularized homologous tissue-engineered heart valves as off-the-shelf alternatives to xeno- and homografts. Biomaterials 2012; 33: 4545–4554.Web of ScienceCrossrefGoogle Scholar

  • [15]

    Dohmen PM, da Costa F, Yoshi S, et al. Histological evaluation of tissue-engineered heart valves implanted in the juvenile sheep model: is there a need for in-vitro seeding? J Heart Valve Dis 2006; 15: 823–829.Google Scholar

  • [16]

    Emmert MY, Weber B, Wolint P, et al. Stem cell-based transcatheter aortic valve implantation: first experiences in a pre-clinical model. JACC Cardiovasc Interv 2012; 5: 874–883.CrossrefGoogle Scholar

  • [17]

    Gerson CJ, Elkins RC, Goldstein S, Heacox AE. Structural integrity of collagen and elastin in SynerGraft® decellularized-cryopreserved human heart valves. Cryobiology 2012; 64: 33–42.CrossrefWeb of SciencePubMedGoogle Scholar

  • [18]

    Hoerstrup SP, Cummings Mrcs I, Lachat M, et al. Functional growth in tissue-engineered living, vascular grafts: follow-up at 100 weeks in a large animal model. Circulation 2006; 114: I159–I166.Google Scholar

  • [19]

    Kasimir MT, Rieder E, Seebacher G, et al. Decellularization does not eliminate thrombogenicity and inflammatory stimulation in tissue-engineered porcine heart valves. J Heart Valve Dis 2006; 15: 278–286; discussion 286.Google Scholar

  • [20]

    Kneib C, von Glehn CQ, Costa FD, Costa MT, Susin MF. Evaluation of humoral immune response to donor HLA after implantation of cellularized versus decellularized human heart valve allografts. Tissue Antigens 2012; 80: 165–174.CrossrefWeb of ScienceGoogle Scholar

  • [21]

    Konuma T, Devaney EJ, Bove EL, et al. Performance of cryovalve sg decellularized pulmonary allografts compared with standard cryopreserved allografts. Ann Thorac Surg 2009; 88: 849–854; discussion 554–845.Web of ScienceCrossrefGoogle Scholar

  • [22]

    Lichtenberg A, Tudorache I, Cebotari S, et al. Preclinical testing of tissue-engineered heart valves re-endothelialized under simulated physiological conditions. Circulation 2006; 114: I559–I565.Google Scholar

  • [23]

    Lutter G, Metzner A, Jahnke T, et al. Percutaneous tissue-engineered pulmonary valved stent implantation. Ann Thorac Surg 2010; 89: 259–263.Web of ScienceCrossrefGoogle Scholar

  • [24]

    Mendelson K, Schoen FJ. Heart valve tissue engineering: concepts, approaches, progress, and challenges. Ann Biomed Eng 2006; 34: 1799–1819.CrossrefPubMedGoogle Scholar

  • [25]

    Miller DV, Edwards WD, Zehr KJ. Endothelial and smooth muscle cell populations in a decellularized cryopreserved aortic homograft (SynerGraft) 2 years after implantation. J Thorac Cardiovasc Surg 2006; 132: 175–176.Google Scholar

  • [26]

    Mulinari LA, Navarro FB, Pimentel GK, et al. The use and midium-term evaluation of decellularized allograft cusp in the surgical treatment of the tetralogy of fallot. Rev Bras Cir Cardiovasc 2008; 23: 197–203.Web of ScienceCrossrefGoogle Scholar

  • [27]

    Narine K, Ing EC, Cornelissen M, et al. Readily available porcine aortic valve matrices for use in tissue valve engineering. Is cryopreservation an option? Cryobiology 2006; 53: 169–181.CrossrefGoogle Scholar

  • [28]

    Rieder E, Seebacher G, Kasimir MT, et al. Tissue engineering of heart valves: decellularized porcine and human valve scaffolds differ importantly in residual potential to attract monocytic cells. Circulation 2005; 111: 2792–2797.CrossrefPubMedGoogle Scholar

  • [29]

    Ruffer A, Purbojo A, Cicha I, et al. Early failure of xenogenous de-cellularised pulmonary valve conduits – a word of caution! Eur J Cardiothorac Surg 2010; 38: 78–85.CrossrefGoogle Scholar

  • [30]

    Ruzmetov M, Shah JJ, Geiss DM, Fortuna RS. Decellularized versus standard cryopreserved valve allografts for right ventricular outflow tract reconstruction: a single-institution comparison. J Thorac Cardiovasc Surg 2012; 143: 543–549.Web of ScienceGoogle Scholar

  • [31]

    Schmidt D, Dijkman PE, Driessen-Mol A, et al. Minimally-invasive implantation of living tissue engineered heart valves: a comprehensive approach from autologous vascular cells to stem cells. J Am Coll Cardiol 2010; 56: 510–520.Web of ScienceCrossrefGoogle Scholar

  • [32]

    Sharp MA, Phillips D, Roberts I, Hands L. A cautionary case: the SynerGraft vascular prosthesis. Eur J Vasc Endovasc Surg 2004; 27: 42–44.CrossrefPubMedGoogle Scholar

  • [33]

    Simon P, Kasimir MT, Seebacher G, et al. Early failure of the tissue engineered porcine heart valve SynerGraft in pediatric patients. Eur J Cardiothorac Surg 2003; 23: 1002–1006; discussion 1006.CrossrefGoogle Scholar

  • [34]

    Stock UA, Degenkolbe I, Attmann T, Schenke-Layland K, Freitag S, Lutter G. Prevention of device-related tissue damage during percutaneous deployment of tissue-engineered heart valves. J Thorac Cardiovasc Surg 2006; 131: 1323–1330.Google Scholar

  • [35]

    Tavakkol Z, Gelehrter S, Goldberg CS, Bove EL, Devaney EJ, Ohye RG. Superior durability of SynerGraft pulmonary allografts compared with standard cryopreserved allografts. Ann Thorac Surg 2005; 80: 1610–1614.PubMedCrossrefGoogle Scholar

  • [36]

    Tudorache I, Calistru A, Baraki H, et al. Orthotopic replacement of aortic heart valves with tissue engineered grafts. Tissue Eng A 2013 April 26 [Epub ahead of print].Web of ScienceGoogle Scholar

  • [37]

    Wollmann LC, Laurindo CA, Costa FD, Moreno AN. Effects of cryopreservation and/or decellularization on extracellular matrix of porcine valves. Rev Bras Cir Cardiovasc 2011; 26: 490–496.CrossrefWeb of SciencePubMedGoogle Scholar

  • [38]

    Zehr KJ, Yagubyan M, Connolly HM, Nelson SM, Schaff HV. Aortic root replacement with a novel decellularized cryopreserved aortic homograft: postoperative immunoreactivity and early results. J Thorac Cardiovasc Surg 2005; 130: 1010–1015.Google Scholar

  • [39]

    Zhou J, Fritze O, Schleicher M, et al. Impact of heart valve decellularization on 3-D ultrastructure, immunogenicity and thrombogenicity. Biomaterials 2010; 31: 2549–2554.PubMedWeb of ScienceCrossrefGoogle Scholar

About the article

Corresponding author: PD Dr. med. Samir Sarikouch, Department of Cardiothoracic, Transplantation and Vascular Surgery, Hanover Medical School, Carl-Neuberg-Straße 1, 30625 Hanover, Germany, Phone: +49-511-532-5567, Fax: +49-511-532-18502, E-mail:


Received: 2012-12-13

Accepted: 2013-05-13

Published Online: 2013-05-28

Published in Print: 2013-10-01


Citation Information: Biomedizinische Technik/Biomedical Engineering, Volume 58, Issue 5, Pages 453–456, ISSN (Online) 1862-278X, ISSN (Print) 0013-5585, DOI: https://doi.org/10.1515/bmt-2012-0115.

Export Citation

©2013 by Walter de Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
V. Lintas, E. S. Fioretta, S. E. Motta, P. E. Dijkman, M. Pensalfini, E. Mazza, E. Caliskan, H. Rodriguez, M. Lipiski, M. Sauer, N. Cesarovic, S. P. Hoerstrup, and M. Y. Emmert
Journal of Cardiovascular Translational Research, 2018
[2]
Sarah E. Motta, Valentina Lintas, Emanuela S. Fioretta, Simon P. Hoerstrup, and Maximilian Y. Emmert
Expert Review of Medical Devices, 2017, Page 1
[3]
Karolina Theodoridis, Igor Tudorache, Serghei Cebotari, Alexandru Calistru, Tanja Meyer, Samir Sarikouch, Christoph Bara, Axel Haverich, and Andres Hilfiker
Tissue Engineering Part C: Methods, 2017
[4]
Wei-hua Qiao, Peng Liu, Dan Hu, Mahmoud Al Shirbini, Xian-ming Zhou, and Nian-guo Dong
Journal of Tissue Engineering and Regenerative Medicine, 2017
[5]
Tamar B. Wissing, Valentina Bonito, Carlijn V. C. Bouten, and Anthal I. P. M. Smits
npj Regenerative Medicine, 2017, Volume 2, Number 1
[6]
M. Granados, L. Morticelli, S. Andriopoulou, P. Kalozoumis, M. Pflaum, P. Iablonskii, B. Glasmacher, M. Harder, J. Hegermann, C. Wrede, I. Tudorache, S. Cebotari, A. Hilfiker, A. Haverich, and Sotirios Korossis
Journal of Cardiovascular Translational Research, 2017
[7]
Maximilian Y. Emmert, Emanuela S. Fioretta, and Simon P. Hoerstrup
Journal of Cardiovascular Translational Research, 2017, Volume 10, Number 2, Page 139
[8]
Yingfei Xue, Vinayak Sant, Julie Phillippi, and Shilpa Sant
Acta Biomaterialia, 2017, Volume 48, Page 2
[9]
Karolina Theodoridis, Janina Müller, Robert Ramm, Katja Findeisen, Birgit Andrée, Sotirios Korossis, Axel Haverich, and Andres Hilfiker
Acta Biomaterialia, 2016, Volume 43, Page 71
[10]
Robert Ramm, Heiner Niemann, Björn Petersen, Axel Haverich, and Andres Hilfiker
Basic Research in Cardiology, 2016, Volume 111, Number 4
[11]
Samir Sarikouch, Alexander Horke, Igor Tudorache, Philipp Beerbaum, Mechthild Westhoff-Bleck, Dietmar Boethig, Oleg Repin, Liviu Maniuc, Anatol Ciubotaru, Axel Haverich, and Serghei Cebotari
European Journal of Cardio-Thoracic Surgery, 2016, Volume 50, Number 2, Page 281
[12]
Zeeshan Syedain, Jay Reimer, Jillian Schmidt, Matthew Lahti, James Berry, Richard Bianco, and Robert T. Tranquillo
Biomaterials, 2015, Volume 73, Page 175

Comments (0)

Please log in or register to comment.
Log in