Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Engineering / Biomedizinische Technik

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering and the German Society of Biomaterials

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Habibović, Pamela / Haueisen, Jens / Jahnen-Dechent, Wilhelm / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Lenarz, Thomas / Leonhardt, Steffen / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Boenick, Ulrich / Jaramaz, Branislav / Kraft, Marc / Lenthe, Harry / Lo, Benny / Mainardi, Luca / Micera, Silvestro / Penzel, Thomas / Robitzki, Andrea A. / Schaeffter, Tobias / Snedeker, Jess G. / Sörnmo, Leif / Sugano, Nobuhiko / Werner, Jürgen /

6 Issues per year


IMPACT FACTOR 2017: 1.096
5-year IMPACT FACTOR: 1.492

CiteScore 2017: 0.48

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.356

Online
ISSN
1862-278X
See all formats and pricing
More options …
Volume 59, Issue 5

Issues

Volume 57 (2012)

Need for CT-based bone density modelling in finite element analysis of a shoulder arthroplasty revealed through a novel method for result analysis

Werner Pomwenger
  • Corresponding author
  • Department of Information Technology, Salzburg University of Applied Science, Urstein Süd 1, 5412 Puch b. Salzburg, Austria
  • Research Program in Prosthetics, Biomechanics and Biomaterials, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Karl Entacher
  • Department of Information Technology, Salzburg University of Applied Science, Urstein Süd 1, 5412 Puch b. Salzburg, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Herbert Resch
  • Department of Trauma Surgery, Salzburg University Hospital and Paracelsus Medical University, Müllner Hauptstraße 48, 5020 Salzburg, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Peter Schuller-Götzburg
  • Research Program in Prosthetics, Biomechanics and Biomaterials, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-05-15 | DOI: https://doi.org/10.1515/bmt-2013-0125

Abstract

Treatment of common pathologies of the shoulder complex, such as rheumatoid arthritis and osteoporosis, is usually performed by total shoulder arthroplasty (TSA). Survival of the glenoid component is still a problem in TSA, whereas the humeral component is rarely subject to failure. To set up a finite element analysis (FEA) for simulation of a TSA in order to gain insight into the mechanical behaviour of a glenoid implant, the modelling procedure and the application of boundary conditions are of major importance because the computed result strongly depends upon the accuracy and sense of realism of the model. The goal of this study was to show the influence on glenoid stress distribution of a patient-specific bone density distribution compared with a homogenous bone density distribution for the purpose of generating a valid model in future FEA studies of the shoulder complex. Detailed information on the integration of bone density properties using existing numerical models as well as the applied boundary conditions is provided. A novel approach involving statistical analysis of values derived from an FEA is demonstrated using a cumulative distribution function. The results show well the mechanically superior behaviour of a realistic bone density distribution and therefore emphasise the necessity for patient-specific simulations in biomechanical and medical simulations.

Keywords: bone density modelling; finite element analysis; patient-specific simulation; result analysis; shoulder arthroplasty.

References

  • [1]

    Anglin C, Tolhurst P, Wyss UP, Pichora DR. Glenoid cancellous bone strength and modulus. J Biomech 1999; 32: 1091–1097.PubMedCrossrefGoogle Scholar

  • [2]

    Anglin C, Wyss UP, Pichora DR. Shoulder prosthesis subluxation: theory and experiment. J Shoulder Elbow Surg 2000; 9: 104–114.PubMedGoogle Scholar

  • [3]

    Bartelt R, Sperling JW, Schleck CD, Cofield RH. Shoulder arthroplasty in patients aged fifty-five years or younger with osteoarthritis. J Shoulder Elbow Surg 2011; 20: 123–130.PubMedGoogle Scholar

  • [4]

    Büchler P, Farron A. Benefits of an anatomical reconstruction of the humeral head during shoulder arthroplasty: a finite element analysis. Clin Biomech (Bristol, Avon) 2004; 19: 16–23.CrossrefGoogle Scholar

  • [5]

    Büchler P, Ramaniraka NA, Rakotomanana LR, Iannotti JP, Farron A. A finite element model of the shoulder: application to the comparison of normal and osteoarthritic joints. Clin Biomech (Bristol, Avon) 2002; 17: 630–639.CrossrefGoogle Scholar

  • [6]

    Bergmann G, Graichen F, Bender A, Kääb M, Rohlmann A, Westerhoff P. In vivo glenohumeral contact forces–measurements in the first patient 7 months postoperatively. J Biomech 2007; 40: 2139–2149.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [7]

    Billingsley P. Probability and measure. 2nd ed. New York: John Wiley & Sons 1986.Google Scholar

  • [8]

    Bohsali KI, Wirth MA, Rockwood CA. Complications of total shoulder arthroplasty. J Bone Joint Surg Am 2006; 88: 2279–2292.PubMedCrossrefGoogle Scholar

  • [9]

    Carter DR, Hayes WC. The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg Am 1977; 59: 954–962.PubMedGoogle Scholar

  • [10]

    Couteau B, Mansat P, Mansat M, Darmana R, Egan J. In vivo characterization of glenoid with use of computed tomography. J Shoulder Elbow Surg 2001; 10: 116–122.PubMedGoogle Scholar

  • [11]

    Devore JL, Berk KN. Modern mathematical statistics with applications. 2nd ed. New York: Springer 2012.Google Scholar

  • [12]

    Fox TJ, Cil A, Sperling JW, Sanchez-Sotelo J, Schleck CD, Cofield RH. Survival of the glenoid component in shoulder arthroplasty. J Shoulder Elbow Surg 2009; 18: 859–863.PubMedGoogle Scholar

  • [13]

    Frich LH, Jensen NC, Odgaard A, Pedersen CM, Søjbjerg JO, Dalstra M. Bone strength and material properties of the glenoid. J Shoulder Elbow Surg 1997, 6: 97–104.PubMedGoogle Scholar

  • [14]

    Gupta S, Prosenjit D. Bone geometry and mechanical properties of the human scapula using computed tomography data. Trends Biomater Artif Organs 2004; 17: 61–70.Google Scholar

  • [15]

    Hopkins AR, Hansen UN, Amis AA, Taylor M, Emery RJ. Glenohumeral kinematics following total shoulder arthroplasty: a finite element investigation. J Orthop Res 2007; 25: 108–115.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [16]

    Hvid I, Bentzen SM, Linde F, Mosekilde L, Pongsoipetch B. X-ray quantitative computed tomography: the relations to physical properties of proximal tibial trabecular bone specimens. J Biomech 1989; 22: 837–844.CrossrefPubMedGoogle Scholar

  • [17]

    Janssen D, Mann KA, Verdonschot N. Micro-mechanical modeling of the cement-bone interface: the effect of friction, morphology and material properties on the micromechanical response. J Biomech 2008; 41: 3158–3163.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [18]

    Kasten P, Pape G, Raiss P, Bruckner T, Rickert M, Zeifang F, et al. Mid-term survivorship analysis of a shoulder replacement with a keeled glenoid and a modern cementing technique. J Bone Joint Surg Br 2010; 92: 387–392.Web of SciencePubMedCrossrefGoogle Scholar

  • [20]

    Lacroix D, Prendergast PJ. Stress analysis of glenoid component designs for shoulder arthroplasty. Proc Inst Mech Eng H 1997; 211: 467–474.PubMedCrossrefGoogle Scholar

  • [19]

    Lacroix D, Murphy LA, Prendergast PJ. Three-dimensional finite element analysis of glenoid replacement prostheses: a comparison of keeled and pegged anchorage systems. J Biomech Eng 2000; 122: 430–436.CrossrefPubMedGoogle Scholar

  • [21]

    Mansat P, Barea C, Hobatho MC, Darmana R, Mansat M. Anatomic variation of the mechanical properties of the glenoid. J Shoulder Elbow Surg 1998; 7: 109–115.PubMedGoogle Scholar

  • [22]

    Matsen FA, Clinton J, Lynch J, Bertelsen A, Richardson ML. Glenoid component failure in total shoulder arthroplasty. J Bone Joint Surg Am 2008; 90: 885–896.PubMedCrossrefGoogle Scholar

  • [23]

    Meyr K. Standard handbook of biomedical engineering anddesign, chapter 8: bone mechanics. 2nd ed. New York: McGraw Hill Professional 2009.Google Scholar

  • [24]

    Murphy LA, Prendergast PJ, Resch H. Structural analysis of an offset-keel design glenoid component compared with a center-keel design. J Shoulder Elbow Surg 2001; 10: 568–579.PubMedGoogle Scholar

  • [25]

    Ramaniraka NA, Rakotomanana LR, Leyvraz PF. The fixation of the cemented femoral component. Effects of stem stiffness, cement thickness and roughness of the cement-bone surface. J Bone Joint Surg Br 2000; 82: 297–303.CrossrefPubMedGoogle Scholar

  • [26]

    Rice JC, Cowin SC, Bowman JA. On the dependence of the elasticity and strength of cancellous bone on apparent density. J Biomech 1988; 21: 155–168.CrossrefGoogle Scholar

  • [27]

    Schaffler MB, Burr DB. Stiffness of compact bone: effects of porosity and density. J Biomech 1988; 21: 13–16.CrossrefPubMedGoogle Scholar

  • [28]

    Soslowsky LJ, Flatow EL, Bigliani LU, Pawluk RJ, Ateshian GA, Mow VC. Quantitation of in situ contact areas at the glenohumeral joint: a biomechanical study. J Orthop Res 1992; 10: 524–534.PubMedCrossrefGoogle Scholar

  • [29]

    Terrier A, Büchler P, Farron A. Bone-cement interface of the glenoid component: stress analysis for varying cement thickness. Clin Biomech (Bristol, Avon) 2005; 20: 710–717.CrossrefGoogle Scholar

  • [30]

    Terrier A, Büchler P, Farron A. Influence of glenohumeral conformity on glenoid stresses after total shoulder arthroplasty. J Shoulder Elbow Surg 2006; 15: 515–520.PubMedGoogle Scholar

  • [31]

    Viceconti M, Olsen S, Nolte LP, Burton K. Extracting clinically relevant data from finite element simulations. Clin Biomech (Bristol, Avon) 2005; 20: 451–454.CrossrefGoogle Scholar

  • [32]

    Walch G, Edwards TB, Boulahia A, Boileau P, Mole D, Adeleine P. The influence of glenohumeral prosthetic mismatch on glenoid radiolucent lines: results of a multicenter study. J Bone Joint Surg Am 2002; 84-A: 2186–2191.PubMedGoogle Scholar

  • [33]

    Walch G, Young AA, Melis B, Gazielly D, Loew M, Boileau P. Results of a convex-back cemented keeled glenoid component in primary osteoarthritis: multicenter study with a follow-up greater than 5 years. J Shoulder Elbow Surg 2011; 20: 385–394.PubMedGoogle Scholar

About the article

Corresponding author: Werner Pomwenger, Department of Information Technology, Salzburg University of Applied Sciences, Urstein Süd 1, 5412 Puch, Austria, Phone: +43/50/2211-1317, Fax: +43/50/2211-1317, E-mail: ; and Research Program in Prosthetics, Biomechanics and Biomaterials, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria


Received: 2013-08-09

Accepted: 2014-04-11

Published Online: 2014-05-15

Published in Print: 2014-10-01


Citation Information: Biomedical Engineering / Biomedizinische Technik, Volume 59, Issue 5, Pages 421–430, ISSN (Online) 1862-278X, ISSN (Print) 0013-5585, DOI: https://doi.org/10.1515/bmt-2013-0125.

Export Citation

©2014 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Nikolas K. Knowles, Jacob M. Reeves, and Louis M. Ferreira
Journal of Experimental Orthopaedics, 2016, Volume 3, Number 1

Comments (0)

Please log in or register to comment.
Log in