Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Engineering / Biomedizinische Technik

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering and the German Society of Biomaterials

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Habibović, Pamela / Haueisen, Jens / Jahnen-Dechent, Wilhelm / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Lenarz, Thomas / Leonhardt, Steffen / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Boenick, Ulrich / Jaramaz, Branislav / Kraft, Marc / Lenthe, Harry / Lo, Benny / Mainardi, Luca / Micera, Silvestro / Penzel, Thomas / Robitzki, Andrea A. / Schaeffter, Tobias / Snedeker, Jess G. / Sörnmo, Leif / Sugano, Nobuhiko / Werner, Jürgen /


IMPACT FACTOR 2018: 1.007
5-year IMPACT FACTOR: 1.390

CiteScore 2018: 1.24

SCImago Journal Rank (SJR) 2018: 0.282
Source Normalized Impact per Paper (SNIP) 2018: 0.831

Online
ISSN
1862-278X
See all formats and pricing
More options …
Volume 62, Issue 2

Issues

Volume 57 (2012)

Model-based glycaemic control: methodology and initial results from neonatal intensive care

Jennifer L. Dickson
  • Corresponding author
  • Department of Mechanical Engineering, College of University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ J. Geoffrey Chase / Adrienne Lynn / Geoffrey M. Shaw
  • Department of Intensive Care, Christchurch School of Medicine and Health Sciences, New Zealand
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-11-03 | DOI: https://doi.org/10.1515/bmt-2016-0051

Abstract

Very/extremely premature infants often experience glycaemic dysregulation, resulting in abnormally elevated (hyperglycaemia) or low (hypoglycaemia) blood glucose (BG) concentrations, due to prematurity, stress, and illness. STAR-GRYPHON is a computerised protocol that utilises a model-based insulin sensitivity parameter to directly tailor therapy for individual patients and their changing conditions, unlike other common insulin protocols in this cohort. From January 2013 to January 2015, 13 patients totalling 16 hyperglycaemic control episodes received insulin under STAR-GRYPHON. A significant improvement in control was achieved in comparison to a retrospective cohort, with a 26% absolute improvement in BG within the targeted range and no hypoglycaemia. This improvement was obtained predominantly due to the reduction of hyperglycaemia (%BG>10.0 mmol/l: 5.6 vs. 17.7%, p<0.001), and lowering of the median per-patient BG [6.9 (6.1–7.9) vs. 7.8 (6.6–9.1) mmol/l, p<0.001, Mann-Witney U test]. While cohort-wide control results show good control overall, there is high intra-patient variability in BG behaviour, resulting in overly conservative treatments for some patients. Patient insulin sensitivity differs between and within patients over time, with some patients having stable insulin sensitivity, while others change rapidly. These results demonstrate the trade-off between safety and performance in a highly variable and fragile cohort.

Keywords: glycaemic control; insulin sensitivity; model-based control; physiological modelling; premature infant; stochastic forecasting

References

  • [1]

    Alaedeen DI, Walsh MC, Chwals WJ. Total parenteral nutrition-associated hyperglycemia correlates with prolonged mechanical ventilation and hospital stay in septic infants. J Pediatr Surg 2006; 41: 239–244.PubMedCrossrefGoogle Scholar

  • [2]

    Alsweiler JM, Harding JE, Bloomfield FH. Tight glycemic control with insulin in hyperglycemic preterm babies: a randomized controlled trial. Pediatrics 2012; 129: 639–647.Web of ScienceCrossrefGoogle Scholar

  • [3]

    Alsweiler JM, Kuschel CA, Bloomfield FH. Survey of the management of neonatal hyperglycaemia in Australasia. J Paediatr Child Health 2007; 43: 632–635.Web of ScienceCrossrefPubMedGoogle Scholar

  • [4]

    Beardsall K, Ogilvy-Stuart AL, Ahluwalia J, Thompson M, Dunger DB. The continuous glucose monitoring sensor in neonatal intensive care. Arch Dis Child Fetal Neonatal Ed 2005; 90: F307–F310.CrossrefGoogle Scholar

  • [5]

    Beardsall K, Vanhaesebrouck S, Ogilvy-Stuart AL, et al. Early insulin therapy in very-low-birth-weight infants. N Engl J Med 2008; 359: 1873–1884.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [6]

    Binder ND, Raschko PK, Benda GI, Reynolds JW. Insulin infusion with parenteral nutrition in extremely low birth weight infants with hyperglycemia. J Pediatr 1989; 114: 273–280.CrossrefPubMedGoogle Scholar

  • [7]

    Blanco CL, Baillargeon JG, Morrison RL, Gong AK. Hyperglycemia in extremely low birth weight infants in a predominantly Hispanic population and related morbidities. J Perinatol 2006; 26: 737–741.CrossrefGoogle Scholar

  • [8]

    Capes SE, Hunt D, Malmberg K, Gerstein HC. Stress hyperglycaemia and increased risk of death after myocardial infarction in patients with and without diabetes: a systematic overview. Lancet 2000; 355: 773–778.CrossrefPubMedGoogle Scholar

  • [9]

    Castle JR, Ward WK. Amperometric glucose sensors: sources of error and potential benefit of redundancy. J Diabetes Sci Technol 2010; 4: 221–225.CrossrefPubMedGoogle Scholar

  • [10]

    Chase JG, Le Compte AJ, Suhaimi F, et al. Tight glycemic control in critical care-the leading role of insulin sensitivity and patient variability: a review and model-based analysis. Comput Methods Programs Biomed 2011; 102: 156–171.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [11]

    Chee F, Fernando TL, Savkin AV, van Heeden V. Expert PID control system for blood glucose control in critically ill patients. IEEE Trans Inf Technol Biomed 2003; 7: 419–425.CrossrefPubMedGoogle Scholar

  • [12]

    Cornblath M, Schwartz R, Aynsley-Green A, Lloyd JK. Hypoglycemia in infancy: the need for a rational definition. A Ciba Foundation discussion meeting. Pediatrics 1990; 85: 834–837.PubMedGoogle Scholar

  • [13]

    Dickson JL, Alsweiler J, Gunn CA, Pretty CG, Chase JG. A C-Peptide-Based model of pancreatic insulin secretion in extremely preterm neonates in intensive care. J Diabetes Sci Technol 2015; 10: 111–118.PubMedGoogle Scholar

  • [14]

    Dickson JL, Dickson JL, Chase JG, Pretty CG, Gunn CA, Alsweiler JA. Modelling insulin clearance and degradation in very premature infants, in 9th IFAC symposium on biological and medical systems. Berlin: IFAC Papers Online 2015.

  • [15]

    Dickson JL, Hewett JN, Gunn CA, Lynn A, Shaw GM, Chase JG. On the problem of patient-specific endogenous glucose production in neonates on stochastic targeted glycemic control. J Diabetes Sci Technol 2013; 7: 913–927.PubMedCrossrefGoogle Scholar

  • [16]

    Dickson JL, Le Comptea AJ, Floyda RP, Geoffrey Chasea J, Lynnb A, Shawc GM. Development and optimisation of stochastic targeted (STAR) glycaemic control for pre-term infants in neonatal intensive care. Biomed Signal Process Control 2013; 8: 215–221.CrossrefWeb of ScienceGoogle Scholar

  • [17]

    Evans A, Shaw GM, Le Compte A, et al. Pilot proof of concept clinical trials of Stochastic Targeted (STAR) glycemic control. Ann Intensive Care 2011; 1: 38.CrossrefWeb of SciencePubMedGoogle Scholar

  • [18]

    Facchinetti A, Del Favero S, Sparacino G, Castle JR, Ward WK, Cobelli C. Modeling the glucose sensor error. IEEE Trans Biomed Eng 2014; 61: 620–629.Web of SciencePubMedCrossrefGoogle Scholar

  • [19]

    Fisk L, Le Compte AJ, Shaw GM, Penning S, Desaive T, Chase JG. STAR Development and Protocol Comparison. IEEE Trans Biomed Eng 2012; 59: 3357–3364.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [20]

    Hall NJ, Peters M, Eaton S, Pierro A. Hyperglycemia is associated with increased morbidity and mortality rates in neonates with necrotizing enterocolitis. J Pediatr Surg 2004; 39: 898–901.CrossrefPubMedGoogle Scholar

  • [21]

    Hann CE, Chase JG, Lin J, Lotz T, Doran CV, Shaw GM. Integral-based parameter identification for long-term dynamic verification of a glucose-insulin system model. Comput Methods Programs Biomed 2005; 77: 259–270.PubMedCrossrefGoogle Scholar

  • [22]

    Harris DL, Weston PJ, Signal M, Chase JG, Harding JE. Dextrose gel for neonatal hypoglycaemia (the Sugar Babies Study): a randomised, double-blind, placebo-controlled trial. Lancet 2013; 382: 2077–2083.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [23]

    Hays SP, Smith B, Sunehag AL. Hyperglycemia is a risk factor for early death and morbidity in extremely low birth-weight infants. Pediatrics. 2006; 118: 1811–1818.PubMedCrossrefGoogle Scholar

  • [24]

    Heimann K, Peschgens T, Kwiecien R, Stanzel S, Hoernchen H, Merz U. Are recurrent hyperglycemic episodes and median blood glucose level a prognostic factor for increased morbidity and mortality in premature infants </=1500 g? J Perinat Med 2007; 35: 245–248.Web of ScienceGoogle Scholar

  • [25]

    Hey E. Hyperglycaemia and the very preterm baby. Semin Fetal Neonatal Med 2005; 10: 377–387.PubMedCrossrefGoogle Scholar

  • [26]

    Krinsley JS. Association between hyperglycemia and increased hospital mortality in a heterogeneous population of critically ill patients. Mayo Clin Proc 2003; 78: 1471–1478.CrossrefGoogle Scholar

  • [27]

    Le Compte AJ, Lee DS, Chase JG, Lin J, Lynn A, Shaw GM. Blood glucose prediction using stochastic modeling in neonatal intensive care. IEEE Trans Biomed Eng 2010; 57: 509–518.Web of SciencePubMedCrossrefGoogle Scholar

  • [28]

    Le Compte AJ, Lynn AM, Lin J, Pretty CG, Shaw GM, Chase JG. Pilot study of a model-based approach to blood glucose control in very-low-birthweight neonates. BMC Pediatr 2012; 12: 117.PubMedWeb of ScienceGoogle Scholar

  • [29]

    Lin J, Lee D, Chase JG, et al. Stochastic modelling of insulin sensitivity and adaptive glycemic control for critical care. Comput Methods Programs Biomed 2008; 89: 141–152.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [30]

    Lucas A, Morley R, Cole TJ. Adverse neurodevelopmental outcome of moderate neonatal hypoglycaemia. Brit Med J 1988; 297: 1304–1308.CrossrefGoogle Scholar

  • [31]

    Ostertag S, Jovanovic L, Lewis B, Auld PA. Insulin pump therapy in the very low birth weight infant. Pediatrics. 1986; 78: 625–630.PubMedGoogle Scholar

  • [32]

    Penning S, Chase JG, Preiser JC, et al. Does the achievement of an intermediate glycemic target reduce organ failure and mortality? A post hoc analysis of the Glucontrol trial. J Crit Care 2014; 29: 374–379.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [33]

    Sexson WR. Incidence of neonatal hypoglycemia: a matter of definition. J Pediatr 1984; 105: 149–150.CrossrefPubMedGoogle Scholar

  • [34]

    Signal M, Le Compte A, Shaw GM, Chase JG. Glycemic levels in critically ill patients: are normoglycemia and low variability associated with improved outcomes? J Diabetes Sci Technol 2012; 6: 1030–1037.PubMedCrossrefGoogle Scholar

  • [35]

    Thabet F, Bourgeois J, Guy B, Putet G. Continuous insulin infusion in hyperglycaemic very-low-birth-weight infants receiving parenteral nutrition. Clin Nutr 2003; 22: 545–547.PubMedCrossrefGoogle Scholar

About the article

Received: 2016-02-29

Accepted: 2016-09-29

Published Online: 2016-11-03

Published in Print: 2017-04-01


Citation Information: Biomedical Engineering / Biomedizinische Technik, Volume 62, Issue 2, Pages 225–233, ISSN (Online) 1862-278X, ISSN (Print) 0013-5585, DOI: https://doi.org/10.1515/bmt-2016-0051.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
J. Geoffrey Chase, Thomas Desaive, Julien Bohe, Miriam Cnop, Christophe De Block, Jan Gunst, Roman Hovorka, Pierre Kalfon, James Krinsley, Eric Renard, and Jean-Charles Preiser
Critical Care, 2018, Volume 22, Number 1

Comments (0)

Please log in or register to comment.
Log in