Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Engineering / Biomedizinische Technik

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering and the German Society of Biomaterials

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Habibović, Pamela / Haueisen, Jens / Jahnen-Dechent, Wilhelm / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Lenarz, Thomas / Leonhardt, Steffen / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Boenick, Ulrich / Jaramaz, Branislav / Kraft, Marc / Lenthe, Harry / Lo, Benny / Mainardi, Luca / Micera, Silvestro / Penzel, Thomas / Robitzki, Andrea A. / Schaeffter, Tobias / Snedeker, Jess G. / Sörnmo, Leif / Sugano, Nobuhiko / Werner, Jürgen /

6 Issues per year


IMPACT FACTOR 2017: 1.096
5-year IMPACT FACTOR: 1.492

CiteScore 2017: 0.48

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.356

Online
ISSN
1862-278X
See all formats and pricing
More options …
Volume 62, Issue 2

Issues

Volume 57 (2012)

Benefits of object-oriented models and ModeliChart: modern tools and methods for the interdisciplinary research on smart biomedical technology

Jonas GesenhuesORCID iD: http://orcid.org/0000-0003-4476-8727 / Marc Hein / Maike Ketelhut / Moriz Habigt / Daniel Rüschen
  • Philips Chair for Medical Information Technology, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mare Mechelinck / Thivaharan Albin / Steffen Leonhardt
  • Philips Chair for Medical Information Technology, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thomas Schmitz-Rode
  • Institute of Applied Medical Engineering, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rolf Rossaint / Rüdiger Autschbach
  • Department of Thoracic and Cardiovascular Surgery, University Hospital RWTH Aachen, Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dirk Abel
Published Online: 2017-01-25 | DOI: https://doi.org/10.1515/bmt-2016-0074

Abstract

Computational models of biophysical systems generally constitute an essential component in the realization of smart biomedical technological applications. Typically, the development process of such models is characterized by a great extent of collaboration between different interdisciplinary parties. Furthermore, due to the fact that many underlying mechanisms and the necessary degree of abstraction of biophysical system models are unknown beforehand, the steps of the development process of the application are iteratively repeated when the model is refined. This paper presents some methods and tools to facilitate the development process. First, the principle of object-oriented (OO) modeling is presented and the advantages over classical signal-oriented modeling are emphasized. Second, our self-developed simulation tool ModeliChart is presented. ModeliChart was designed specifically for clinical users and allows independently performing in silico studies in real time including intuitive interaction with the model. Furthermore, ModeliChart is capable of interacting with hardware such as sensors and actuators. Finally, it is presented how optimal control methods in combination with OO models can be used to realize clinically motivated control applications. All methods presented are illustrated on an exemplary clinically oriented use case of the artificial perfusion of the systemic circulation.

This article offers supplementary material which is provided at the end of the article.

Keywords: biophysical systems; hardware interaction; interdisciplinary collaboration; Modelica; ModeliChart; object-oriented modeling; optimal control; Optimica; simulation

References

  • [1]

    Abel D, Bollig A. Rapid control prototyping. Berlin, Heidelberg: Springer 2006.Google Scholar

  • [2]

    Åkesson J. Optimica – an extension of modelica supporting dynamic optimization. In: Proceedings of the 6th International Modelica Conference 2008. Bielefeld, Germany 2008.Google Scholar

  • [3]

    Åkesson J, Årzén K-E, Gäfvert M, Bergdahl T, Tummescheit H. Modeling and optimization with Optimica and JModelica. org – Languages and tools for solving large-scale dynamic optimization problems. Comput Chem Eng 2010; 34: 1737–1749.CrossrefWeb of ScienceGoogle Scholar

  • [4]

    AlOmari A-HH, Savkin AV, Stevens M, et al. Developments in control systems for rotary left ventricular assist devices for heart failure patients: a review. Physiol meas 2012; 34: R1.PubMedWeb of ScienceGoogle Scholar

  • [5]

    Amacher R, Asprion J, Ochsner G, et al. Numerical optimal control of turbo dynamic ventricular assist devices. Bioengineering 2013; 1: 22–46.CrossrefGoogle Scholar

  • [6]

    Andersson J, Åkesson J, Casella F, Diehl M. Integration of CasADi and JModelica. org. In: Proceedings of the 8th International Modelica Conference. Dresden, Germany 2011: 218–231.Google Scholar

  • [7]

    Andersson J, Åkesson J, Diehl M. CasADi: a symbolic package for automatic differentiation and optimal control. Berlin, Heidelberg, Germany: Springer 2012.Google Scholar

  • [8]

    Blochwitz T, Otter M, Åkesson J, Arnold M, Clauss C, Elmqvist H, et al. Functional mockup interface 2.0: the standard for tool independent exchange of simulation models. In: Proceedings of the 9th International Modelica Conference. Munich, Germany: The Modelica Association 2012: 173–184.Google Scholar

  • [9]

    Brunberg A, Maschuw J, Autschbach R, Abel D. Object-oriented model library of the cardiovascular system including physiological control loops. In: Proceedings of the World Congress on Medical Physics and Biomedical Engineering, September 7–12, 2009, Munich, Germany. Springer 2009: 166–169.Google Scholar

  • [10]

    Fritzson P. Principles of object-oriented modeling and simulation with Modelica 2.1. Hoboken, New Jersey: John Wiley & Sons 2010.Google Scholar

  • [11]

    Gesenhues J, Hein M, Habigt M, Mechelinck M, Albin T, Abel D. Nonlinear object-oriented modeling based optimal control of the heart: performing precise preload manipulation maneuvers using a ventricular assist device. In: Proceedings of the 2016 European Control Conference (ECC). 2016: 2108–2114.Google Scholar

  • [12]

    Habigt M, Ketelhut M, Gesenhues J, Schrödel F, Hein M, Mechelinck M, et al. Comparison of novel physiological load-adaptive control strategies for ventricular assist devices. Biomedical Engineering/Biomedizinische Technik 2016. doi: https://doi.org/10.1515/bmt-2016-0073. [Epub ahead of print].Web of Science

  • [13]

    Heinke S, Pereira C, Leonhardt S, Walter M. Modeling a healthy and a person with heart failure conditions using the object-oriented modeling environment Dymola. Med Biol Eng Comput 2015; 53: 1049–1068.CrossrefWeb of ScienceGoogle Scholar

  • [14]

    Heinke S, Schwandtner S, Costante C, et al. Modellierung und Regelung eines hydraulischen HIL-Simulators zum Test von Herzunterstützungssystemen/Modeling and Control of a Hydraulic Simulator for Ventricular Assist Device Testing. at-Automatisierungstechnik 2013; 61: 645–655.Google Scholar

  • [15]

    Mateják M, Kulhánek T, Šilar J, Privitzer P, Jezek F, Kofránek J. Physiolibrary-Modelica library for physiology. In: Proceedings of the 10th International Modelica Conference; March 10–12; 2014; Lund; Sweden: Linköping University Electronic Press 2014: 499–505.Google Scholar

  • [16]

    Misgeld BJE, Rüschen D, Schwandtner S, Heinke S, Walter M, Leonhardt S. Robust decentralised control of a hydrodynamic human circulatory system simulator. Biomed Signal Proces Control 2020; 15: 35–44.Web of ScienceGoogle Scholar

  • [17]

    Moza A, Gesenhues J, Autschbach R, et al. Parametrization of an in-silico circulatory simulation by clinical datasets – towards prediction of ventricular function following assist device implantation. [Epub ahead of print].Web of SciencePubMed

  • [18]

    Wächter A, Biegler LT. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Program 2006; 106: 25–57.CrossrefGoogle Scholar

  • [19]

    Westerhof N, Lankhaar J-W, Westerhof BE. The arterial windkessel. Med Biol Eng Comput 2009; 47: 131–141.CrossrefPubMedWeb of ScienceGoogle Scholar

About the article

Received: 2016-03-23

Accepted: 2016-11-28

Published Online: 2017-01-25

Published in Print: 2017-04-01


Citation Information: Biomedical Engineering / Biomedizinische Technik, Volume 62, Issue 2, Pages 111–121, ISSN (Online) 1862-278X, ISSN (Print) 0013-5585, DOI: https://doi.org/10.1515/bmt-2016-0074.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Filip Ježek, Tomáš Kulhánek, Karel Kalecký, and Jiri Kofránek
Biocybernetics and Biomedical Engineering, 2017

Comments (0)

Please log in or register to comment.
Log in