Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Engineering / Biomedizinische Technik

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering and the German Society of Biomaterials

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Habibović, Pamela / Haueisen, Jens / Jahnen-Dechent, Wilhelm / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Lenarz, Thomas / Leonhardt, Steffen / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Boenick, Ulrich / Jaramaz, Branislav / Kraft, Marc / Lenthe, Harry / Lo, Benny / Mainardi, Luca / Micera, Silvestro / Penzel, Thomas / Robitzki, Andrea A. / Schaeffter, Tobias / Snedeker, Jess G. / Sörnmo, Leif / Sugano, Nobuhiko / Werner, Jürgen /


IMPACT FACTOR 2017: 1.096
5-year IMPACT FACTOR: 1.492

CiteScore 2017: 0.48

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.356

Online
ISSN
1862-278X
See all formats and pricing
More options …
Volume 62, Issue 2

Issues

Volume 57 (2012)

Design of a right ventricular mock circulation loop as a test bench for right ventricular assist devices

Indra Mueller
  • Corresponding author
  • Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, RWTH Aachen University, Pauwelsstr.20, 52074 Aachen, Germany, Phone: +49 241 80-89168, Fax: +49 241 80-82144
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ So-Hyun Jansen-Park
  • Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, RWTH Aachen University, 52074 Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michael Neidlin
  • Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, RWTH Aachen University, 52074 Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ulrich Steinseifer
  • Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, RWTH Aachen University, 52074 Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dirk Abel / Rüdiger Autschbach
  • Department of Cardiothoracic and Vascular Surgery, University Hospital RWTH Aachen, 52074 Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rolf Rossaint / Thomas Schmitz-Rode
  • Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, RWTH Aachen University, 52074 Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Simon Johannes Sonntag
  • Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, RWTH Aachen University, 52074 Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-12-17 | DOI: https://doi.org/10.1515/bmt-2016-0104

Abstract

Right heart failure (RHF), e.g. due to pulmonary hypertension (PH), is a serious health issue with growing occurrence and high mortality rate. Limited efficacy of medication in advanced stages of the disease constitutes the need for mechanical circulatory support of the right ventricle (RV). An essential contribution to the process of developing right ventricular assist devices (RVADs) is the in vitro test bench, which simulates the hemodynamic behavior of the native circulatory system. To model healthy and diseased arterial-pulmonary hemodynamics in adults (mild and severe PH and RHF), a right heart mock circulation loop (MCL) was developed. Incorporating an anatomically shaped silicone RV and a silicone atrium, it not only enables investigations of hemodynamic values but also suction events or the handling of minimal invasive RVADs in an anatomical test environment. Ventricular pressure-volume loops of all simulated conditions as well as pressure and volume waveforms were recorded and compared to literature data. In an exemplary test, an RVAD was connected to the apex to further test the feasibility of studying such devices with the developed MCL. In conclusion, the hemodynamic behavior of the native system was well reproduced by the developed MCL, which is a useful basis for future RVAD tests.

Keywords: anatomical mock ventricle; cannula; mechanical circulatory support; pulmonary hypertension; pulmonary mock circulation; right heart failure

References

  • [1]

    Champion HC, Michelakis ED, Hassoun PM. Comprehensive invasive and noninvasive approach to the right ventricle–pulmonary circulation unit state of the art and clinical and research implications. Circ 2009;120:992–1007.CrossrefGoogle Scholar

  • [2]

    Chemla D, Castelain V, Zhu K, et al. Estimating right ventricular stroke work and the pulsatile work fraction in pulmonary hypertension. Chest 2013;143:1343–1350.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [3]

    Cuenca-Navalon E. Design and evaluation of a hybrid mock circulatory loop for total artificial heart testing. Int J Artif Organs 2014;37:71–80.Web of ScienceCrossrefPubMedGoogle Scholar

  • [4]

    Gregory SD, Pearcy MJ, Fraser J, Timms D. Evaluation of inflow cannulation site for implantation of right-sided rotary ventricular assist device. Artif Organs 2013;37:704–711.Web of SciencePubMedCrossrefGoogle Scholar

  • [5]

    Hsu PL, Hatam N, Unterkofler J, et al. Selective reduction of afterload in right heart assist therapy: a mock loop study. Interact Cardiovasc Thorac Surg 2014;19:76–81.CrossrefWeb of SciencePubMedGoogle Scholar

  • [6]

    Hsu PL, McIntyre M, Boehning F, et al. In-series versus in-parallel mechanical circulatory support for the right heart: A simulation study. Artif Organs 2016;40:561–567.Web of SciencePubMedCrossrefGoogle Scholar

  • [7]

    Jansen-Park SH, Mahmood MN, Müller I, et al. Effects of interaction between ventricular assist device assistance and autoregulated mock circulation including frank–starling mechanism and baroreflex. Artif Organs 2016;40:981–991.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [8]

    Kuehne T, Yilmaz S, Steendijk P, et al. Magnetic resonance imaging analysis of right ventricular pressure-volume loops in vivo validation and clinical application in patients with pulmonary hypertension. Circulation 2004;110:2010–2016.CrossrefPubMedGoogle Scholar

  • [9]

    Laumen M, Kaufmann T, Timms D, et al. Flow analysis of ventricular assist device inflow and outflow cannula positioning using a naturally shaped ventricle and aortic branch. Artif Organs 2010;34:798–806.Web of ScienceCrossrefPubMedGoogle Scholar

  • [10]

    Mehra MR, Park MH, Landzberg MJ, Lala A, Waxman AB. Right heart failure: toward a common language. Pulm Circ 2013;3:963–967.CrossrefWeb of ScienceGoogle Scholar

  • [11]

    Naeije R, Brimioulle S, Dewachter L. Biomechanics of the right ventricle in health and disease (2013 grover conference series). Pulm Circ 2014;4:395–406.PubMedCrossrefGoogle Scholar

  • [12]

    Noor MR, Ho CH, Parker KH, Banner NR, Bowles CT. Investigation of the Characteristics of HeartWare HVAD and Thoratec HeartMate II Under Steady and Pulsatile Flow Conditions. Artif Organs 2016;40:549–560.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [13]

    Ochiai Y, McCarthy PM, Smedira NG, et al. Predictors of severe right ventricular failure after implantable left ventricular assist device insertion: analysis of 245 patients. Circ 2002;106:I-198-I-202.Google Scholar

  • [14]

    Price LC, Wort SJ, Finney SJ, Marino PS, Brett SJ. Pulmonary vascular and right ventricular dysfunction in adult critical care: current and emerging options for management: a systematic literature review. Crit Care 2010;14:R169.Web of SciencePubMedCrossrefGoogle Scholar

  • [15]

    Punnoose L, Burkhoff D, Rich S, Horn EM. Right ventricular assist device in end-stage pulmonary arterial hypertension: insights from a computational model of the cardiovascular system. Prog Cardiovasc Dis 2012;55:234–243.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [16]

    Rex S, Missant C, Claus P, Buhre W, Wouters PF. Effects of inhaled iloprost on right ventricular contractility, right ventriculo-vascular coupling and ventricular interdependence: a randomized placebo-controlled trial in an experimental model of acute pulmonary hypertension. Crit Care 2008;12:R113.Web of ScienceCrossrefGoogle Scholar

  • [17]

    Ruiz P, Rezaienia MA, Rahideh A, Keeble TR, Rothman MT, Korakianitis T. In vitro cardiovascular system emulator (bioreactor) for the simulation of normal and diseased conditions with and without mechanical circulatory support. Artif Organs 2013;37:549–560.Web of SciencePubMedCrossrefGoogle Scholar

  • [18]

    Ryan JJ, Huston J, Kutty S, et al. Right ventricular adaptation and failure in pulmonary arterial hypertension. Can J Cardiol 2015;31:391–406.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [19]

    Schampaert S, Pennings KAMA, Van de Molengraft MJG, Pijls NHJ, Van de Vosse FN, Rutten MCM. A mock circulation model for cardiovascular device evaluation. Phys Measurement 2014;35:687–702.CrossrefGoogle Scholar

  • [20]

    Steffers G, Credner S. Kardiologie. In: Allgemeine Krankheitslehre und Innere Medizin fuer Physiotherapeuten. Stuttgart: Georg Thieme Verlag 2011:86–88.Google Scholar

  • [21]

    Sumikura H, Homma A, Ohnuma K, et al. Development and evaluation of endurance test system for ventricular assist devices. J Artif Organs 2013;16:138–148.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [22]

    Sumikura H, Nakayama Y, Ohnuma K, Kishimoto S, Takewa Y, Tatsumi E. In vitro hydrodynamic evaluation of a biovalve with stent (tubular leaflet type) for transcatheter pulmonary valve implantation. J Artif Organs 2015;18:307–314.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [23]

    Suzuki I, Shiraishi Y, Yabe S. Engineering analysis of the effects of bulging sinuses in a newly designed pediatric pulmonary heart valve on hemodynamic function. J Artif Organs 2012;15:49–56.CrossrefWeb of ScienceGoogle Scholar

  • [24]

    Thabut G, Dauriat G, Stern JB, et al. Pulmonary hemodynamics in advanced COPD candidates for lung volume reduction surgery or lung transplantation. Chest 2005;127:1531–1536.CrossrefPubMedGoogle Scholar

  • [25]

    Timms D, Hayne M, McNeil K, Galbraith A. A complete mock circulation loop for the evaluation of left, right, and biventricular assist devices. Artif Organs 2005;29:564–572.PubMedCrossrefGoogle Scholar

  • [26]

    Timms D, Gregory S, Hsu PL, et al. Atrial versus ventricular cannulation for a rotary ventricular assist device. Artif Organs 2010;34:714–720.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [27]

    Tsuboko Y, Matsuo S, Shiraishi Y, et al. Design of a right ventricular simulator for the evaluation of artificial pulmonary valve. In: The 15th International Conference on Biomedical Engineering. Springer 2014:440–443.Google Scholar

  • [28]

    Voelkel NF, Quaife RA, Leinwand LA, et al. Right ventricular function and failure report of a national heart, lung, and blood institute working group on cellular and molecular mechanisms of right heart failure. Circulation 2006;114:1883–1891.CrossrefGoogle Scholar

  • [29]

    Wong KC, Buesen M, Benzinger C, et al. Effect of rotary blood pump pulsatility on potential parameters of blood compatibility and thrombosis in inflow cannula tips. Int J Artif Organs 2014;37:875–887.Web of SciencePubMedCrossrefGoogle Scholar

About the article

Received: 2016-05-02

Accepted: 2016-10-27

Published Online: 2016-12-17

Published in Print: 2017-04-01


Financial support: This study was funded by the German Research Foundation (SCHM 1307/12-1 and SCHM 1307/13-1).


Citation Information: Biomedical Engineering / Biomedizinische Technik, Volume 62, Issue 2, Pages 131–137, ISSN (Online) 1862-278X, ISSN (Print) 0013-5585, DOI: https://doi.org/10.1515/bmt-2016-0104.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Seraina Anne Dual, Jan Michael Zimmermann, Jürg Neuenschwander, Nicholas Heinrich Cohrs, Natalia Solowjowa, Wendelin Jan Stark, Mirko Meboldt, and Marianne Schmid Daners
Artificial Organs, 2018

Comments (0)

Please log in or register to comment.
Log in