Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Engineering / Biomedizinische Technik

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering and the German Society of Biomaterials

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Habibović, Pamela / Haueisen, Jens / Jahnen-Dechent, Wilhelm / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Lenarz, Thomas / Leonhardt, Steffen / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Boenick, Ulrich / Jaramaz, Branislav / Kraft, Marc / Lenthe, Harry / Lo, Benny / Mainardi, Luca / Micera, Silvestro / Penzel, Thomas / Robitzki, Andrea A. / Schaeffter, Tobias / Snedeker, Jess G. / Sörnmo, Leif / Sugano, Nobuhiko / Werner, Jürgen /

6 Issues per year

IMPACT FACTOR 2016: 0.915
5-year IMPACT FACTOR: 1.263

See all formats and pricing
More options …
Volume 62, Issue 5


Volume 57 (2012)

Validation and comparison of shank and lumbar-worn IMUs for step time estimation

William JohnstonORCID iD: http://orcid.org/0000-0003-0525-6577 / Matthew PattersonORCID iD: http://orcid.org/0000-0002-9774-4094 / Niamh O’MahonyORCID iD: http://orcid.org/0000-0003-0986-3673 / Brian Caulfield
Published Online: 2016-12-21 | DOI: https://doi.org/10.1515/bmt-2016-0120


Gait assessment is frequently used as an outcome measure to determine changes in an individual’s mobility and disease processes. Inertial measurement units (IMUs) are quickly becoming commonplace in gait analysis. The purpose of this study was to determine and compare the validity of shank and lumbar IMU mounting locations in the estimation of temporal gait features. Thirty-seven adults performed 20 walking trials each over a gold standard force platform while wearing shank and lumbar-mounted IMUs. Data from the IMUs were used to estimate step times using previously published algorithms and were compared with those derived from the force platform. There was an excellent level of correlation between the force platform and shank (r=0.95) and lumbar-mounted (r=0.99) IMUs. Bland-Altman analysis demonstrated high levels of agreement between the IMU and the force platform step times. Confidence interval widths were 0.0782 s for the shank and 0.0367 s for the lumbar. Both IMU mounting locations provided accurate step time estimations, with the lumbar demonstrating a marginally superior level of agreement with the force platform. This validation indicates that the IMU system is capable of providing step time estimates within 2% of the gold standard force platform measurement.

Keywords: gait; IMU; lumbar; shank; step time


  • [1]

    Ben Mansour K, Rezzoug N, Gorce P. Analysis of several methods and inertial sensors locations to assess gait parameters in able-bodied subjects. Gait Posture 2015; 42: 409–414.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [2]

    Bigelow EM, Elvin NG, Elvin AA, Arnoczky SP. Peak impact accelerations during track and treadmill running. J Appl Biomech 2013; 29: 639–644.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [3]

    Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Int J Nurs Stud 2010; 47: 931–936.CrossrefWeb of ScienceGoogle Scholar

  • [4]

    Dobkin BH. Wearable motion sensors to continuously measure real-world physical activities. Curr Opin Neurol 2013; 26: 602–608.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [5]

    Dobkin BH, Dorsch A. The promise of mHealth: daily activity monitoring and outcome assessments by wearable sensors. Neurorehabil Neural Repair 2011; 25: 788–798.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [6]

    Fraccaro P, Walsh L, Doyle J, O’Sullivan D. Real-world Gyroscope-based Gait Event Detection and Gait Feature Extraction; Presented at the the Sixth International Conference on eHealth, Telemedicine and Social Medicine, Barcelona, Spain, 2014.Google Scholar

  • [7]

    Godfrey A, Del Din S, Barry G, Mathers JC, Rochester L. Instrumenting gait with an accelerometer: a system and algorithm examination. Med Eng Phys 2015; 37: 400–417.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [8]

    González RC, López AM, Rodriguez-Uría J, Álvarez D, Alvarez JC. Real-time gait event detection for normal subjects from lower trunk accelerations. Gait Posture 2010; 31: 322–325.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [9]

    Greene BR, McGrath D, O’Neill R, O’Donovan KJ, Burns A, Caulfield B. An adaptive gyroscope-based algorithm for temporal gait analysis. Med Biol Eng Comput 2010; 48: 1251–1260.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [10]

    Hinkle DE, Wiersma W, Jurs SG. Applied Statistics for the Behavioral Sciences. 5th ed. Boston, MA, USA: Houghton Mifflin 2003.Google Scholar

  • [11]

    Jasiewicz JM, Allum JH, Middleton JW, et al. Gait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individuals. Gait Posture 2006; 24: 502–509.CrossrefPubMedGoogle Scholar

  • [12]

    Kavanagh JJ, Menz HB. Accelerometry: a technique for quantifying movement patterns during walking. Gait Posture 2008; 28: 1–15.Web of ScienceCrossrefPubMedGoogle Scholar

  • [13]

    Lau H, Tong K. The reliability of using accelerometer and gyroscope for gait event identification on persons with dropped foot. Gait Posture 2008; 27: 248–257.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [14]

    Lee JA, Cho SH, Lee JW, Lee KH, Yang HK. Wearable accelerometer system for measuring the temporal parameters of gait. Conf Proc IEEE Eng Med Biol Soc 2007; 2007: 483–486.PubMedGoogle Scholar

  • [15]

    Lee Rodgers J, Nicewander WA. Thirteen ways to look at the correlation coefficient. Am Stat 1988; 42: 59–66.Google Scholar

  • [16]

    Martin Bland J, Altman D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986; 327: 307–310.CrossrefGoogle Scholar

  • [17]

    Mayagoitia RE, Nene AV, Veltink PH. Accelerometer and rate gyroscope measurement of kinematics: an inexpensive alternative to optical motion analysis systems. J Biomech 2002; 35: 537–542.PubMedCrossrefGoogle Scholar

  • [18]

    Moe-Nilssen R. A new method for evaluating motor control in gait under real-life environmental conditions. Part 1: the instrument. Clin Biomech (Bristol, Avon) 1998; 13: 320–327.CrossrefPubMedGoogle Scholar

  • [19]

    Moore ST, MacDougall HG, Ondo WG. Ambulatory monitoring of freezing of gait in Parkinson’s disease. J Neurosci Methods 2008; 167: 340–348.Web of SciencePubMedCrossrefGoogle Scholar

  • [20]

    Patterson MR, Caulfield B. Comparing adaptive algorithms to measure temporal gait parameters using lower body mounted inertial sensors. Conf Proc IEEE Eng Med Biol Soc 2012; 2012: 4509–4512.PubMedGoogle Scholar

  • [21]

    Perry J, Burnfield JM, Cabico LM. Gait analysis: normal and pathological function. J Pediatr 1992; 12: 815.Google Scholar

  • [22]

    Riley PO, Paolini G, Della Croce U, Paylo KW, Kerrigan DC. A kinematic and kinetic comparison of overground and treadmill walking in healthy subjects. Gait Posture 2007; 26: 17–24.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [23]

    Sofuwa O, Nieuwboer A, Desloovere K, Willems A-M, Chavret F, Jonkers I. Quantitative gait analysis in Parkinson’s disease: comparison with a healthy control group. Arch Phys Med Rehabil 2005; 86: 1007–1013.CrossrefPubMedGoogle Scholar

  • [24]

    Taylor JK, Cihon C. Statistical techniques for data analysis. 2nd ed. Boca Raton, FL, USA: Chapman & Hall/CRC Press 2004.Google Scholar

  • [25]

    Tirosh O, Sparrow WA. Identifying heel contact and toe-off using forceplate thresholds with a range of digital-filter cutoff frequencies. J Appl Biomech 2003; 19: 178–184.CrossrefGoogle Scholar

  • [26]

    Tong K, Granat MH. A practical gait analysis system using gyroscopes. Med Eng Phys 1999; 21: 87–94.CrossrefPubMedGoogle Scholar

  • [27]

    Trojaniello D, Cereatti A, Della Croce U. Accuracy, sensitivity and robustness of five different methods for the estimation of gait temporal parameters using a single inertial sensor mounted on the lower trunk. Gait Posture 2014; 40: 487–492.Web of ScienceCrossrefPubMedGoogle Scholar

  • [28]

    Trojaniello D, Cereatti A, Pelosin E, et al. Estimation of step-by-step spatio-temporal parameters of normal and impaired gait using shank-mounted magneto-inertial sensors: application to elderly, hemiparetic, parkinsonian and choreic gait. J Neuroeng Rehabil 2014; 11: 152.Web of SciencePubMedCrossrefGoogle Scholar

  • [29]

    Trojaniello D, Ravaschio A, Hausdorff JM, Cereatti A. Comparative assessment of different methods for the estimation of gait temporal parameters using a single inertial sensor: application to elderly, post-stroke, Parkinson’s disease and Huntington’s disease subjects. Gait Posture 2015; 42: 310–316.Web of ScienceCrossrefPubMedGoogle Scholar

  • [30]

    Weiss A, Brozgol M, Dorfman M, et al. Does the evaluation of gait quality during daily life provide insight into fall risk? A novel approach using 3-day accelerometer recordings. Neurorehabil Neural Repair 2013; 27: 742–752.Web of ScienceCrossrefGoogle Scholar

  • [31]

    Weiss A, Herman T, Giladi N, Hausdorff JM. Objective assessment of fall risk in Parkinson’s disease using a body-fixed sensor worn for 3 days. PLoS One 2014; 9: e96675.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [32]

    Weiss A, Sharifi S, Plotnik M, van Vugt JP, Giladi N, Hausdorff JM. Toward automated, at-home assessment of mobility among patients with Parkinson disease, using a body-worn accelerometer. Neurorehabil Neural Repair 2011; 25: 810–818.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [33]

    Winter DA. Biomechanics and motor control of human movement (no. Book, Whole). Hoboken, NJ: John Wiley & Sons 2009.Google Scholar

  • [34]

    Yang S, Zhang J-T, Novak AC, Brouwer B, Li Q. Estimation of spatio-temporal parameters for post-stroke hemiparetic gait using inertial sensors. Gait Posture 2013; 37: 354–358.CrossrefWeb of SciencePubMedGoogle Scholar

  • [35]

    Zeni JA, Jr, Richards JG, Higginson JS. Two simple methods for determining gait events during treadmill and overground walking using kinematic data. Gait Posture 2008; 27: 710–714.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [36]

    Zijlstra W, Hof AL. Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait Posture 2003; 18: 1–10.CrossrefPubMedGoogle Scholar

About the article

Received: 2016-05-26

Accepted: 2016-11-15

Published Online: 2016-12-21

Published in Print: 2017-10-26

Conflicts of interest statement: The authors declare that Dr. Matthew Patterson and Dr. Niamh O’Mahony were employees of Shimmer, Dublin, Ireland, at the time that this study was carried out.

Citation Information: Biomedical Engineering / Biomedizinische Technik, Volume 62, Issue 5, Pages 537–545, ISSN (Online) 1862-278X, ISSN (Print) 0013-5585, DOI: https://doi.org/10.1515/bmt-2016-0120.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in