Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Engineering / Biomedizinische Technik

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering and the German Society of Biomaterials

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Habibović, Pamela / Haueisen, Jens / Jahnen-Dechent, Wilhelm / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Lenarz, Thomas / Leonhardt, Steffen / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Boenick, Ulrich / Jaramaz, Branislav / Kraft, Marc / Lenthe, Harry / Lo, Benny / Mainardi, Luca / Micera, Silvestro / Penzel, Thomas / Robitzki, Andrea A. / Schaeffter, Tobias / Snedeker, Jess G. / Sörnmo, Leif / Sugano, Nobuhiko / Werner, Jürgen /

6 Issues per year

IMPACT FACTOR 2017: 1.096
5-year IMPACT FACTOR: 1.492

CiteScore 2017: 0.48

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.356

See all formats and pricing
More options …
Volume 62, Issue 6


Volume 57 (2012)

Rapid, automated mosaicking of the human corneal subbasal nerve plexus

Yash J. Vaishnav
  • Frank H. Netter M.D. School of Medicine, Quinnipiac University, North Haven, CT 06518, USA
  • Francis I. Proctor Foundation, University of California, San Francisco, CA 94143, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stuart A. Rucker / Keshav Saharia / Nancy A. McNamara
Published Online: 2017-03-04 | DOI: https://doi.org/10.1515/bmt-2016-0148


Corneal confocal microscopy (CCM) is an in vivo technique used to study corneal nerve morphology. The largest proportion of nerves innervating the cornea lie within the subbasal nerve plexus, where their morphology is altered by refractive surgery, diabetes and dry eye. The main limitations to clinical use of CCM as a diagnostic tool are the small field of view of CCM images and the lengthy time needed to quantify nerves in collected images. Here, we present a novel, rapid, fully automated technique to mosaic individual CCM images into wide-field maps of corneal nerves. We implemented an OpenCV image stitcher that accounts for corneal deformation and uses feature detection to stitch CCM images into a montage. The method takes 3–5 min to process and stitch 40–100 frames on an Amazon EC2 Micro instance. The speed, automation and ease of use conferred by this technique is the first step toward point of care evaluation of wide-field subbasal plexus (SBP) maps in a clinical setting.

Keywords: computer vision; corneal confocal microscopy; dry eye; image processing; speeded-up robust features


  • [1]

    Allgeier S, Eberle F, Köhler B, et al. Mosaicking images of the corneal sub-basal nerve plexus using hierarchical block-based image registration. Biomed Eng/Biomed Tech 2012; 57: 30–33.Google Scholar

  • [2]

    Allgeier S, Maier S, Mikut R, et al. Mosaicking the subbasal nerve plexus by guided eye movements. Invest Ophthalmol Vis Sci 2014; 55: 6082–6089.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [3]

    Bay H, Ess A, Tuytelaars T, Van Gool L. SURF: speeded up robust features. Comput Vis Image Underst 2008; 110: 346–359.Web of ScienceCrossrefGoogle Scholar

  • [4]

    Calvillo MP, McLaren JW, Hodge DO, Bourne WM. Corneal reinnervation after LASIK: prospective 3-year longitudinal study. Invest Ophthalmol Vis Sci 2004; 45: 3991–3996.CrossrefPubMedGoogle Scholar

  • [5]

    Chen X, Graham J, Dabbah MA, et al. Small nerve fiber quantification in the diagnosis of diabetic sensorimotor polyneuropathy: comparing corneal confocal microscopy with intraepidermal nerve fiber density. Diabetes Care 2015; 38: 1138–1144.CrossrefWeb of ScienceGoogle Scholar

  • [6]

    Dabbah MA, Graham J, Petropoulos I, Tavakoli M, Malik RA. Dual-model automatic detection of nerve-fibres in corneal confocal microscopy images. Med Image Comput Comput Assist Interv 2010; 13: 300–307.PubMedGoogle Scholar

  • [7]

    Dabbah MA, Graham J, Petropoulos IN, et al. Automatic analysis of diabetic peripheral neuropathy using multi-scale quantitative morphology of nerve fibres in corneal confocal microscopy imaging. Med Image Anal 2011; 15: 738–747.Web of SciencePubMedCrossrefGoogle Scholar

  • [8]

    Edwards K, Pritchard N, Gosschalk K, et al. Wide-field assessment of the human corneal subbasal nerve plexus in diabetic neuropathy using a novel mapping technique. Cornea 2012; 31: 1078–1082.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [9]

    Fischler MA, Bolles RC. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Comm ACM 1981; 24: 381–395.CrossrefGoogle Scholar

  • [10]

    Galor A, Levitt RC, Felix ER, Martin ER, Sarantopoulos CD. Neuropathic ocular pain: an important yet underevaluated feature of dry eye. Eye (Lond) 2015; 29: 301–312.PubMedCrossrefGoogle Scholar

  • [11]

    Lum E, Golebiowski B, Swarbrick HA. Mapping the corneal sub-basal nerve plexus in orthokeratology lens wear using in vivo laser scanning confocal microscopy. Invest Ophthalmol Vis Sci 2012; 53: 1803–9.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [12]

    Misra SL, Craig JP, Patel DV, et al. In vivo confocal microscopy of corneal nerves: an ocular biomarker for peripheral and cardiac autonomic neuropathy in type 1 diabetes mellitus. Invest Ophthalmol Vis Sci 2015; 56: 5060–5065.Web of SciencePubMedCrossrefGoogle Scholar

  • [13]

    Nettune GR, Pflugfelder SC. Post-LASIK tear dysfunction and dysesthesia. Ocul Surf 2010; 8: 135–145.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [14]

    OpenCV. Stitching Pipeline: OpenCV Documentation. 30 July 2015.

  • [15]

    Patel DV, McGhee CNJ. Mapping of the normal human corneal sub-basal nerve plexus by in vivo laser scanning confocal microscopy. Invest Ophthalmol Vis Sci 2005; 46: 4485–4488.CrossrefPubMedGoogle Scholar

  • [16]

    Patel DV, McGhee CNJ. Mapping the corneal sub-basal nerve plexus in keratoconus by in vivo laser scanning confocal microscopy. Invest Ophthalmol Vis Sci 2006; 47: 1348–1351.PubMedCrossrefGoogle Scholar

  • [17]

    Petropoulos IN, Alam U, Fadavi H, et al. Rapid automated diagnosis of diabetic peripheral neuropathy with in vivo corneal confocal microscopy. Invest Ophthalmol Vis Sci 2014; 55: 2071–2078.Web of SciencePubMedCrossrefGoogle Scholar

  • [18]

    Petropoulos IN, Manzoor T, Morgan P, et al. Repeatability of in vivo corneal confocal microscopy to quantify corneal nerve morphology. Cornea 2013; 32: e83–89.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [19]

    Poletti E, Wigdahl J, Guimaraes P, Ruggeri A. Automatic montaging of corneal sub-basal nerve images for the composition of a wide-range mosaic. Conf Proc IEEE Eng Med Biol Soc 2014; 2014: 5426–5429.PubMedGoogle Scholar

  • [20]

    Stachs O, Zhivov A, Kraak R, Hovakimyan M, Wree A, Guthoff R. Structural-functional correlations of corneal innervation after LASIK and penetrating keratoplasty. J Refract Surg 2010; 26: 159–167.PubMedWeb of ScienceGoogle Scholar

  • [21]

    Tavakoli M, Ferdousi M, Petropoulos IN, et al. Normative values for corneal nerve morphology assessed using corneal confocal microscopy: a multinational normative data set. Diabetes Care 2015; 38: 838–843.CrossrefPubMedGoogle Scholar

  • [22]

    Turuwhenua JT, Patel DV, McGhee CNJ. Fully automated montaging of laser scanning in vivo confocal microscopy images of the human corneal subbasal nerve plexus. Invest Ophthalmol Vis Sci 2012; 53: 2235–2242.Web of SciencePubMedCrossrefGoogle Scholar

  • [23]

    Villani E, Baudouin C, Efron N, et al. In vivo confocal microscopy of the ocular surface: from bench to bedside. Curr Eye Res 2014; 39: 213–231.CrossrefWeb of ScienceGoogle Scholar

  • [24]

    Zhivov A, Blum M, Guthoff R, Stachs O. Real-time mapping of the subepithelial nerve plexus by in vivo confocal laser scanning microscopy. Br J Ophthalmol 2010; 94: 1133–1135.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [25]

    Ziegler D, Papanas N, Zhivov A. Early detection of nerve fiber loss by corneal confocal microscopy and skin biopsy in recently diagnosed type 2 diabetes. Diabetes 2014; 63: 2454–2463.CrossrefWeb of SciencePubMedGoogle Scholar

About the article

Corresponding author: Nancy A. McNamara, OD, PhD, Department of Anatomy, Francis I. Proctor Foundation, University of California, San Francisco, Box 0452, 513 Parnassus, Health Sciences West, Rm 1324, San Francisco, CA 94143, USA, Phone: +415-637-1057, Fax: +415-476-4845

Received: 2016-06-30

Accepted: 2017-01-12

Published Online: 2017-03-04

Published in Print: 2017-11-27

Funding: This research was partially funded by National Eye Institute grant NEI EY016203 and a grant from the Frank H. Netter School of Medicine at Quinnipiac University.

Author contributions: Imaging was performed at the Francis I. Proctor Foundation by Drs. Jeremy Keenan and Salena Lee. Ayush Jain and Kalen Frieberg worked on the stitching algorithms and the user interface.

Citation Information: Biomedical Engineering / Biomedizinische Technik, Volume 62, Issue 6, Pages 609–613, ISSN (Online) 1862-278X, ISSN (Print) 0013-5585, DOI: https://doi.org/10.1515/bmt-2016-0148.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Stephan Allgeier, Andreas Bartschat, Sebastian Bohn, Sabine Peschel, Klaus-Martin Reichert, Karsten Sperlich, Marcus Walckling, Veit Hagenmeyer, Ralf Mikut, Oliver Stachs, and Bernd Köhler
Scientific Reports, 2018, Volume 8, Number 1

Comments (0)

Please log in or register to comment.
Log in