Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Engineering / Biomedizinische Technik

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering and the German Society of Biomaterials

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Habibović, Pamela / Haueisen, Jens / Jahnen-Dechent, Wilhelm / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Lenarz, Thomas / Leonhardt, Steffen / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Boenick, Ulrich / Jaramaz, Branislav / Kraft, Marc / Lenthe, Harry / Lo, Benny / Mainardi, Luca / Micera, Silvestro / Penzel, Thomas / Robitzki, Andrea A. / Schaeffter, Tobias / Snedeker, Jess G. / Sörnmo, Leif / Sugano, Nobuhiko / Werner, Jürgen /

IMPACT FACTOR 2017: 1.096
5-year IMPACT FACTOR: 1.492

CiteScore 2017: 0.48

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.356

See all formats and pricing
More options …
Volume 64, Issue 1


Volume 57 (2012)

Wheeze sound analysis using computer-based techniques: a systematic review

Fizza Ghulam Nabi
  • Corresponding author
  • School of Mechatronic Engineering, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia, Phone: +601111519452
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kenneth Sundaraj
  • Faculty of Electronics and Computer Engineering, Universiti Teknikal Malaysia Melaka (UTeM), 76100 Durian Tunggal, Melaka, Malaysia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lam Chee Kiang
  • School of Mechatronic Engineering, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rajkumar Palaniappan
  • School of Electronics Engineering, Vellore Institute of Technology (VIT), Tamil Nadu 632014, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sebastian Sundaraj
  • Department of Anesthesiology, Hospital Tengku Ampuan Rahimah (HTAR), 41200 Klang, Selangor, Malaysia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-10-31 | DOI: https://doi.org/10.1515/bmt-2016-0219


Wheezes are high pitched continuous respiratory acoustic sounds which are produced as a result of airway obstruction. Computer-based analyses of wheeze signals have been extensively used for parametric analysis, spectral analysis, identification of airway obstruction, feature extraction and diseases or pathology classification. While this area is currently an active field of research, the available literature has not yet been reviewed. This systematic review identified articles describing wheeze analyses using computer-based techniques on the SCOPUS, IEEE Xplore, ACM, PubMed and Springer and Elsevier electronic databases. After a set of selection criteria was applied, 41 articles were selected for detailed analysis. The findings reveal that 1) computerized wheeze analysis can be used for the identification of disease severity level or pathology, 2) further research is required to achieve acceptable rates of identification on the degree of airway obstruction with normal breathing, 3) analysis using combinations of features and on subgroups of the respiratory cycle has provided a pathway to classify various diseases or pathology that stem from airway obstruction.

Keywords: adventitious sound; airway obstruction; lung function; severity level; wheeze analysis; wheeze detection


  • [1]

    Alic A, Lackovic I, Bilas V, Sersic D, Magjarevic R. A novel approach to wheeze detection. IFMBE Conf Proc 2007: 963–966.Google Scholar

  • [2]

    Bahoura M. Pattern recognition methods applied to respiratory sounds classification into normal and wheeze classes. Comput Biol Med 2009; 39: 824–843.CrossrefPubMedGoogle Scholar

  • [3]

    Bahoura M, Pelletier C. New parameters for respiratory sound classification. IEEE CCECE Conf Proc 2003: 1457–1460.Google Scholar

  • [4]

    Bahoura M, Pelletier C. Respiratory sounds classification using cepstral analysis and Gaussian mixture models. IEEE IEMBS Conf Proc 2004: 9–12.Google Scholar

  • [5]

    Bahoura M, Pelletier C. Respiratory sounds classification using gaussian mixture models. IEEE CCECE Conf Proc 2004: 1309–1312.Google Scholar

  • [6]

    Bokov P, Mahut B, Flaud P, Delclaux C. Wheezing recognition algorithm using recordings of respiratory sounds at the mouth in a pediatric population. Comput Biol Med 2016; 70: 40–50.CrossrefGoogle Scholar

  • [7]

    Bor-Shing L, Bor-Shys L. Automatic wheezing detection using speech recognition technique. J Med Biol Eng 2016; 36: 545–554.CrossrefGoogle Scholar

  • [8]

    Bor-Shing L, Huey-Dong W, Sao-Jie C. Automatic wheezing detection based on signal processing of spectrogram and back-propagation neural network. J HealthC Eng 2015; 6: 649–672.CrossrefPubMedGoogle Scholar

  • [9]

    Charbonneau G, Ademovic E, Cheetham BMG, et al. Basic techniques for respiratory sound analysis. Eur Respir Rev 2000; 10: 625–635.Google Scholar

  • [10]

    Chen C-H, Huang W-T, Tan T-H, Chang C-C, Chang Y-J. Using k-nearest neighbor classification to diagnose abnormal lung sounds. Sensors 2015; 15: 13132–13158.PubMedCrossrefGoogle Scholar

  • [11]

    Chronic obstruction pulmonary disease (COPD) [http://www.who.int/mediacentre/factsheets/fs315/en/] (Accessed on 29 October, 2016).

  • [12]

    Chronic respiratory diseases [http://www.who.int/respiratory/asthma/en/] (Accessed on 29 October, 2016).

  • [13]

    Earis JE, Cheetham BMG. Current methods used for computerized respiratory sound analysis. Eur Respir Rev 2000; 10: 586–590.Google Scholar

  • [14]

    Emrani S, Gentimis T, Krim H. Persistent homology of delay embeddings and its application to wheeze detection. IEEE Signal Proc Let 2014; 21: 459–463.CrossrefGoogle Scholar

  • [15]

    Emrani S, Chintakunta H, Krim H. Real time detection of harmonic structure: a case for topological signal analysis. IEEE ICASSP Conf Proc 2014: 3445–3449.Google Scholar

  • [16]

    Fenton TR, Pasterkamp H, Tal A, Chernick V. Automated spectral characterization of wheezing in asthmatic children. IEEE T Bio-Med Eng 1985; 32: 50–55.Google Scholar

  • [17]

    Fiz JA, Jané R, Salvatella D, et al. Analysis of tracheal sounds during forced exhalation in asthma patients and normal subjects: bronchodilator response effect. Chest 1999; 116: 633–638.PubMedCrossrefGoogle Scholar

  • [18]

    Fiz JA, Jané R, Homs A, et al. Detection of wheezing during maximal forced exhalation in patients with obstructed airways. Chest 2002; 122: 186–191.CrossrefPubMedGoogle Scholar

  • [19]

    Fiz JA, Jané R, Lozano M, Gómez R, Ruiz J. Detecting unilateral phrenic paralysis by acoustic respiratory analysis. PLoS One 2014; 9: e93595.PubMedCrossrefGoogle Scholar

  • [20]

    Gross V, Dittmar A, Penzel T, Schuttler F, Von Wichert P. The relationship between normal lung sounds, age, and gender. Am J Resp Crit Care 2000; 162: 905–909.CrossrefGoogle Scholar

  • [21]

    Gross V, Hadjileontiadis L, Penzel T, Koehler U, Vogelmeier C. Multimedia database “Marburg Respiratory Sounds (MARS)”. IEEE EMBS Conf Proc 2003: 456–457.Google Scholar

  • [22]

    Gurung A, Scrafford CG, Tielsch JM, Levine OS, Checkley W. Computerized lung sound analysis as diagnostic aid for the detection of abnormal lung sounds: A systematic review and meta-analysis. Resp Med 2011; 105: 1396–1403.CrossrefGoogle Scholar

  • [23]

    Homs-Corbera A, Fiz JA, Morera J, Jané R. Time-frequency detection and analysis of wheezes during forced exhalation. IEEE T Bio-Med Eng 2004; 51: 182–186.CrossrefGoogle Scholar

  • [24]

    Jácome C, Marques A. Computerized respiratory sounds in patients with COPD: a systematic review. COPD 2015; 12: 104–112.CrossrefPubMedGoogle Scholar

  • [25]

    Jin F, Krishnan S, Sattar F. Adventitious sounds identification and extraction using temporal-spectral dominance-based features. IEEE T Bio-Med Eng 2011; 58: 3078–3087.CrossrefGoogle Scholar

  • [26]

    Kraman SS, Wodicka GR, Oh Y, Pasterkamp H. Measurement of respiratory acoustic signals: effect of microphone air cavity width, shape, and venting. Chest 1995; 108: 1004–1008.PubMedCrossrefGoogle Scholar

  • [27]

    Li S-H, Lin B-S, Tsai C-H, Yang C-T, Lin B-S. Design of wearable breathing sound monitoring system for real-time wheeze detection. Sensors 2017; 17:171.CrossrefGoogle Scholar

  • [28]

    Lin B-S, Yen T-S. An FPGA-based rapid wheezing detection system. Int J Env Res Pub He 2014; 11: 1573–1593.CrossrefGoogle Scholar

  • [29]

    Lozano M, Fiz J, Jané R. Automatic differentiation of normal and continuous adventitious respiratory sounds using ensemble empirical mode decomposition and instantaneous frequency. IEEE J Biomed Health 2016; 20: 486–497.CrossrefGoogle Scholar

  • [30]

    Lozano M, Fiz JA, Jané R. Performance evaluation of the Hilbert-Huang transform for respiratory sound analysis and its application to continuous adventitious sound characterization. Signal Process 2016; 120: 99–116.CrossrefGoogle Scholar

  • [31]

    Mazić I, Sovilj S, Magjarevic R. Analysis of respiratory sounds in asthmatic infants. Meas Sci Rev 2003; 3: 9–12.Google Scholar

  • [32]

    Mazić I, Bonković M, Džaja B. Two-level coarse-to-fine classification algorithm for asthma wheezing recognition in children’s respiratory sounds. Biomed Signal Proces 2015; 21: 105–118.CrossrefGoogle Scholar

  • [33]

    Meslier N, Charbonneau G, Racineux JL. Wheezes. Eur Respir J 1995; 8: 1942–1948.PubMedCrossrefGoogle Scholar

  • [34]

    National Asthma Education and Prevention Program – Guidelines for the Diagnosis and Management of Asthma (NAEPP National Asthma Education and Prevention Program) [http://www.nhlbi.nih.gov/guidelines/asthma/asthgdln.pdf].

  • [35]

    Naves R, Barbosa BHG, Ferreira DD. Classification of lung sounds using higher-order statistics: a divide-and-conquer approach. Comput Meth Prog Bio 2016; 129: 12–20.CrossrefGoogle Scholar

  • [36]

    Oud M. Classification and recognition of asthmatic breathing sounds. EEAN Conf Proc 1996: 414–418.Google Scholar

  • [37]

    Oud M. Lung function interpolation by means of neural-network-supported analysis of respiration sounds. Med Eng Phys 2003; 25: 309–316.CrossrefPubMedGoogle Scholar

  • [38]

    Oud M, Dooijes EH. Automated breath sound analysis. IEMBS Conf Proc 1996: 990–992.Google Scholar

  • [39]

    Oud M, Dooijes EH, Van der Veen MJ. Classification of asthmatic lung sound spectra. IFMBE Conf Proc 1998: 440–448.Google Scholar

  • [40]

    Oud M, Dooijes EH, Van der Zee JS. Asthmatic airways obstruction assessment based on detailed analysis of respiratory sound spectra. IEEE T BioMed Eng 2000; 47: 1450–1455.CrossrefGoogle Scholar

  • [41]

    Palaniappan R, Sundaraj K, Ahamed NU, Arjunan A, Sundaraj S. Computer-based respiratory sound analysis: a systematic review. IETE Tech Rev 2013; 30: 248–256.CrossrefGoogle Scholar

  • [42]

    Palaniappan R, Sundaraj K, Ahamed NU. Machine learning in lung sound analysis: a systematic review. Biocybern Biomed Eng 2013; 33: 129–135.CrossrefGoogle Scholar

  • [43]

    Palaniappan R, Sundaraj K, Sundaraj S. Artificial intelligence techniques used in respiratory sound analysis – a systematic review. Biomed Eng-Biomed TE 2014; 59: 7–18.Google Scholar

  • [44]

    Palaniappan R, Sundaraj K, Sundaraj S. Adaptive neuro-fuzzy inference system for breath phase detection and breath cycle segmentation. Comput Meth Prog Bio 2017; 145: 67–72.CrossrefGoogle Scholar

  • [45]

    Pasterkamp H, Kraman SS, DeFrain PD, Wodicka GR. Measurement of respiratory acoustical signals: comparison of sensors. Chest 1993; 104: 1518–1526.CrossrefPubMedGoogle Scholar

  • [46]

    Pneumonia [http://www.who.int/mediacentre/factsheets/fs331/en/] (Accessed on 29 October, 2016).

  • [47]

    Pramono RXA, Bowyer S, Rodriguez-Villegas E. Automatic adventitious respiratory sound analysis: a systematic review. PLoS One 2017; 12: e0177926.PubMedCrossrefGoogle Scholar

  • [48]

    Qiu Y, Whittaker AR, Lucas M, Anderson K. Automatic wheeze detection based on auditory modelling. Proc Inst Mech Eng H 2005; 219: 219–227.PubMedCrossrefGoogle Scholar

  • [49]

    Riella RJ, Nohama P, Maia JM. Method for automatic detection of wheezing in lung sounds. Braz J Med Biol Res 2009; 42: 674–684.CrossrefPubMedGoogle Scholar

  • [50]

    Rietveld S, Oud M, Dooijes EH. Classification of asthmatic breath sounds: preliminary results of the classifying capacity of human examiners versus artificial neural networks. Comput Biomed Res 1999; 32: 440–448.CrossrefPubMedGoogle Scholar

  • [51]

    Rossi M, Sovijärvi ARA, Piirilä P, et al. Environmental and subject conditions and breathing manoeuvres for respiratory sound recordings. Eur Respir Rev 2000; 10: 611–615.Google Scholar

  • [52]

    Sengupta N, Sahidullah Md, Saha G. Lung sound classification using cepstral-based statistical features. Comput Biol Med 2016; 75: 118–129.PubMedCrossrefGoogle Scholar

  • [53]

    Shabtai-Musih Y, Grotberg JB, Gavriely N. Spectral content of forced expiratory wheezes during air, He, and SF6 breathing in normal humans. J Appl Physiol 1992; 72: 629–635.CrossrefGoogle Scholar

  • [54]

    Sokolovsky V, Furman G, Malinin S, Yakovleva E, Furman E. Computer-assisted assay of respiratory sounds of children suffering from bronchial asthma. M Tech Med 2014; 6: 83–87.Google Scholar

  • [55]

    Sovijärvi ARA, Malmberg LP, Charbonneau G, et al. Characteristics of breath sounds and adventitious respiratory sounds. Eur Respir Rev 2000; 10: 591–596.Google Scholar

  • [56]

    Styliani A. Taplidou LJH, Ilias K. Kitsas, Konstantinos I. Panoulas. On applying continuous wavelet transform in wheeze analysis. IEEE EMBS Conf Proc 2004: 3832–3835.Google Scholar

  • [57]

    Taplidou SA, Hadjileontiadis LJ. Nonlinear analysis of wheezes using wavelet bicoherence. Comput Biol Med 2007; 37: 563–570.PubMedCrossrefGoogle Scholar

  • [58]

    Taplidou SA, Hadjileontiadis LJ. Wheeze detection based on time-frequency analysis of breath sounds. Comput Biol Med 2007; 37: 1073–1083.PubMedCrossrefGoogle Scholar

  • [59]

    Taplidou SA, Hadjileontiadis LJ. Analysis of wheezes using wavelet higher order spectral features. IEEE T Bio-Med Eng 2010; 57: 1596–1610.CrossrefGoogle Scholar

  • [60]

    Taplidou SA, Hadjileontiadis LJ, Penzel T, Gross V, Panas SM. WED: an efficient wheezing-episode detector based on breath sounds spectrogram analysis. IEEE EMBS Conf Proc 2003: 2531–2534.Google Scholar

  • [61]

    The GOLD Workshop Panel, Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease: Pocket guide to COPD diagnosis, management, and prevention – A guide for health care professionals. [http://itarget.com.br/newclients/sbpt.org.br/2011/downloads/arquivos/Dir_DPOC_Int/Global_Strategy_for_Diagnosis_Management_Prevention_Chronic_Obstructive_Pulmonary_Disease_AJRCCM_2007.pdf].

  • [62]

    The RALE Repository (Respiratory Sounds) [http://www.rale.ca/repository.htm] (Accessed on 19 May, 2016).Google Scholar

  • [63]

    Vannuccini L, Earis JE, Helisto P, et al. Capturing and preprocessing of respiratory sounds. Eur Respir Rev 2000; 10: 616–620.Google Scholar

  • [64]

    Waris M, Helisto P, Haltsonen S, Saarinen A, Sovijärvi ARA. A new method for automatic wheeze detection. Technol Health Care 1998; 6: 33–40.PubMedGoogle Scholar

  • [65]

    Wilkins RL, Hodgkin JE, Lopez B. Fundamentals of lung and heart sounds. 3rd ed. Maryland Heights, MO, USA: Mosby 2004.Google Scholar

  • [66]

    Williams L. Wilkins. Auscultation skills: breath and heart sounds. 4th ed. Princeton, NJ, USA: Princeton Univ. Press 2009.Google Scholar

  • [67]

    Wisniewski M, Zielinski TP. Joint application of audio spectral envelope and tonality index in an e-asthma monitoring system. IEEE J Biomed Health 2015; 19: 1009–1018.Google Scholar

  • [68]

    Wodicka GR, Kraman SS, Zenk GM, Pasterkamp H. Measurement of respiratory acoustic signals: effect of microphone air cavity depth. Chest 1994; 106: 1140–1144.PubMedCrossrefGoogle Scholar

  • [69]

    Wrigley D. Heart & Lung Sounds Reference Library. In PESI HealthCare (CD); 2011.Google Scholar

  • [70]

    Yu C, Tsai T-H, Huang S-I, Lin C-W. Soft stethoscope for detecting asthma wheeze in young children. Sensors 2013; 13: 7399–7413.PubMedCrossrefGoogle Scholar

About the article

Received: 2016-11-14

Accepted: 2017-08-24

Published Online: 2017-10-31

Published in Print: 2019-02-25

Citation Information: Biomedical Engineering / Biomedizinische Technik, Volume 64, Issue 1, Pages 1–28, ISSN (Online) 1862-278X, ISSN (Print) 0013-5585, DOI: https://doi.org/10.1515/bmt-2016-0219.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in