Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Engineering / Biomedizinische Technik

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering and the German Society of Biomaterials

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Habibović, Pamela / Haueisen, Jens / Jahnen-Dechent, Wilhelm / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Lenarz, Thomas / Leonhardt, Steffen / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Boenick, Ulrich / Jaramaz, Branislav / Kraft, Marc / Lenthe, Harry / Lo, Benny / Mainardi, Luca / Micera, Silvestro / Penzel, Thomas / Robitzki, Andrea A. / Schaeffter, Tobias / Snedeker, Jess G. / Sörnmo, Leif / Sugano, Nobuhiko / Werner, Jürgen /

6 Issues per year


IMPACT FACTOR 2016: 0.915
5-year IMPACT FACTOR: 1.263

Online
ISSN
1862-278X
See all formats and pricing
More options …
Ahead of print

Issues

Volume 57 (2012)

Heart valves from polyester fibers: a preliminary 6-month in vivo study

Antoine Vaesken / Anne Pelle
  • INSERM U1148, Laboratory for Vascular Translational Science, Université Paris 13, Sorbonne Paris Cité, 99 Av. Jean-Baptiste Clément, 93430 Villetaneuse, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Graciela Pavon-Djavid
  • INSERM U1148, Laboratory for Vascular Translational Science, Université Paris 13, Sorbonne Paris Cité, 99 Av. Jean-Baptiste Clément, 93430 Villetaneuse, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jeanne Rancic
  • Laboratoire de Recherches Biochirurgicales de la Fondation Alain Carpentier, plate-forme de l’Université Paris Descartes, Paris, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nabil Chakfe / Frederic Heim
  • Corresponding author
  • Laboratoire de Physique et Mécanique Textiles EA 4365, ENSISA, Geprovas, Mulhouse, France, Phone: +33 6 79 77 02 32, Fax: +33 3 89 33 63 39
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-05-03 | DOI: https://doi.org/10.1515/bmt-2016-0242

Abstract

Transcatheter aortic valve implantation (TAVI) has become a popular alternative technique to surgical valve replacement for critical patients. Biological valve tissue has been used in TAVI procedures for over a decade, with over 150,000 implantations to date. However, with only 6 years of follow up, little is known about the long-term durability of biological tissue. Moreover, the high cost of tissue harvesting and chemical treatment procedures favor the development of alternative synthetic valve leaflet materials. In that context, textile polyester [polyethylene terephthalate (PET)] could be considered as an interesting candidate to replace the biological valve leaflets in TAVI procedures. However, no result is available in the literature about the behavior of textile once in contact with biological tissue in the valve position. The interaction of synthetic textile material with living tissues should be comparable to biological tissue. The purpose of this preliminary work is to compare the in vivo performances of various woven textile PET valves over a 6-month period in order to identify favorable textile construction features. In vivo results indicate that fibrosis as well as calcium deposit can be limited with an appropriate material design.

Keywords: fiber valve; heart valve; TAVI; textile valve; transcatheter valve; valve fibrosis

References

  • [1]

    Alavi H, Groves E, Kheradvar A. The effects of transcatheter valve crimping on pericardial leaflets. Ann Thorac Surg 2014; 97: 1260–1266.Google Scholar

  • [2]

    Amoroso NJ, D’Amore A, Hong Y, Rivera CP, Sacks MS, Wagner WR. Microstructural manipulation of electrospun scaffolds for specific bending stiffness for heart valve tissue engineering. Acta Biomater 2012; 8: 4268–4277.Google Scholar

  • [3]

    Brydone AS, Dalby MJ, Berry CC, Dominic Meek RM, McNamara LE. Grooved surface topography alters matrix-metalloproteinase production by human fibroblasts. Biomed Mater 2011; 6: 035005.Google Scholar

  • [4]

    Cao H, McHugh K, Chew SY, Anderson JM. The topographical effect of electrospun nanofibrous scaffolds on the in vivo and in vitro foreign body reaction. J Biomed Mater Res A 2010; 93: 1151–1159.Google Scholar

  • [5]

    Cribier A, Eltchaninoff H, Bash A, et al. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis, first human case description. Circulation 2002; 106: 3006–3008.Google Scholar

  • [6]

    Davidson MJ, White JK, Baim DS. Percutaneous therapies for valvular heart disease. Cardiovasc Pathol 2006; 15: 123–129.Google Scholar

  • [7]

    Dvir D. Half of transcatheter heart valves show degeneration within 10 years of TAVI. EuroPCR 2016. Session: Tuesday 17 May 11.20-12.20, Late-breaking trials, registries and innovations.Google Scholar

  • [8]

    Edwards SL, Werkmeister JA. Mechanical evaluation and cell response of woven polyetheretherketone scaffolds. J Biomed Mater Res A 2012; 100: 3326–3331.Google Scholar

  • [9]

    Haller N. Noninvasive analysis of synthetic and decellularized scaffolds for heart valve tissue engineering. ASAIO 2013; 59: 169–177.Google Scholar

  • [10]

    Heim F, Durand B, Chakfe N. Textile heartvalve prosthesis: manufacturing process and prototype performances. Text Res J 2008; 78: 1124–1131.Google Scholar

  • [11]

    Hodgkinson T, Yuan XF, Bayat A. Electrospun silk fibroin fiber diameter influences in vitro dermal fibroblast behavior and promotes healing of ex vivo wound models. J Tissue Eng 2014; 5: 2041731414551661.Google Scholar

  • [12]

    Khoffi F, Heim F, Chakfe N, Lee JT. Transcatheter fiber heart valve: effect of crimping on material performances. J Biomed Mater Res B Appl Biomater 2015; 103: 1488–1497.Google Scholar

  • [13]

    Kiefer P, Gruenwald F, Kempfert J, et al. Crimping may affect the durability of transcatheter valves: an experimental analysis. Ann Thorac Surg 2011; 92: 155–160.Google Scholar

  • [14]

    Kim H, Murakami H, Chehroudi B, Textor M, Brunette D. Effects of surface topography on the connective tissue attachment to subcutaneous implants. Int J Oral Maxillofac Implants 2006; 21: 354–365.Google Scholar

  • [15]

    Kolind K, Dolatshahi-Pirouz A, Lovmand J, Pedersen FS, Foss M, Besenbacher F. A combinatorial screening of human fibroblast responses on micro-structured surfaces. Biomaterials 2010; 31: 9182–9191.Google Scholar

  • [16]

    Kucinska-Lipka J, Gubanska I, Janik H, Sienkiewicz M. Fabrication of polyurethane and polyurethane based composite fibres by the electrospinning technique for soft tissue engineering of cardiovascular system. Mat Sc Eng C 2015; 46: 166–176.Google Scholar

  • [17]

    Li M, Guo Y, Wei Y, MacDiarmid AG, Lelkes PI. Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Biomaterials 2006; 27: 2705–2715.Google Scholar

  • [18]

    Liao KK, Li X, John R, et al. Mechanical stress: an independent determinant of early bioprosthetic calcification in humans. Ann Thorac Surg 2008; 86: 491–495.Google Scholar

  • [19]

    Liu Y, Ji Y, Ghosh K, Clark RA, Huang L, Rafailovich MH. Effects of fiber orientation and diameter on the behavior of human dermal fibroblasts on electrospun PMMA scaffolds. J Biomed Mater Res A 2009; 90: 1092–1106.Google Scholar

  • [20]

    Sanders JE, Cassisi DV, Neumann T, et al. Relative influence of polymer fiber diameter and surface charge on fibrous capsule thickness and vessel density for single-fiber implants. J Biomed Mater Res A 2003; 65: 462–467.Google Scholar

  • [21]

    Sanders JE, Stiles CE, Hayes CL. Tissue response to single-polymer fibers of varying diameters: evaluation of fibrous encapsulation and macrophage density. J Biomed Mater Res 2000; 52: 231–237.Google Scholar

  • [22]

    Schoen F, Levy R. Pathological calcification of biomaterials. Biomaterials Science: an introduction to materials in medicine. 2012. Chapter II/4.5.Google Scholar

  • [23]

    Takahashi Y, Tabata YJ. Effect of the fiber diameter and porosity of non-woven PET fabrics on the osteogenic differentiation of mesenchymal stem cells. J Biomater Sci Polym Ed 2004; 15: 41–57.Google Scholar

  • [24]

    Teixeira NA, Platt MM, Hamburger WJ. Mechanics of elastic performance of textile materials: Part XII: relation of certain geometric factors to the tear strength of woven fabrics. Text Res J 1955; 10: 838–861.Google Scholar

  • [25]

    Tian F, Hosseinkhani H, Hosseinkhani M, et al. Quantitative analysis of cell adhesion on aligned micro- and nanofibers. J Biomed Mater Res A 2008; 84: 291–299.Google Scholar

  • [26]

    Vaesken A, Heim F, Chakfe N. Fiber heart valve prosthesis: influence of the fabric construction parameters on the valve fatigue performances. J Mech Behav Biomed Mater 2014; 40: 69–74.Google Scholar

  • [27]

    Yang F, Murugan R, Wang S, Ramakrishna S. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 2006; 26: 2603–2610.Google Scholar

  • [28]

    Zegdi R, Ciobotaru V, Noghin M, et al. Is it reasonable to treat all calcified stenotic aortic valves with a valved stent? Results from a human anatomic study in adults. J Am Coll Cardiol 2008; 51: 579–584.Google Scholar

  • [29]

    Zhong S, Teo WE, Zhu X, Beuerman RW, Ramakrishna S, Yung LY. An aligned nanofibrous collagen scaffold by electrospinning and its effects on in vitro fibroblast culture. J Biomed Mater Res A 2006; 79: 456–463.Google Scholar

About the article

Received: 2016-12-05

Accepted: 2017-03-28

Published Online: 2017-05-03


Citation Information: Biomedical Engineering / Biomedizinische Technik, 20160242, ISSN (Online) 1862-278X, ISSN (Print) 0013-5585, DOI: https://doi.org/10.1515/bmt-2016-0242.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in