Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Engineering / Biomedizinische Technik

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering and the German Society of Biomaterials

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Habibović, Pamela / Haueisen, Jens / Jahnen-Dechent, Wilhelm / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Lenarz, Thomas / Leonhardt, Steffen / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Boenick, Ulrich / Jaramaz, Branislav / Kraft, Marc / Lenthe, Harry / Lo, Benny / Mainardi, Luca / Micera, Silvestro / Penzel, Thomas / Robitzki, Andrea A. / Schaeffter, Tobias / Snedeker, Jess G. / Sörnmo, Leif / Sugano, Nobuhiko / Werner, Jürgen /

IMPACT FACTOR 2017: 1.096
5-year IMPACT FACTOR: 1.492

CiteScore 2017: 0.48

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.356

See all formats and pricing
More options …
Volume 64, Issue 2


Volume 57 (2012)

Simulation of personalised haemodynamics by various mounting positions of a prosthetic valve using computational fluid dynamics

Markus Bongert
  • Corresponding author
  • Department of Mechanical Engineering, Research Center for BioMedical Technology (BMT), University of Applied Sciences and Arts Dortmund, Sonnenstr. 96, D-44139 Dortmund, Germany, Phone: +49 231 9112 232, Fax: +49 231 9112 696
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marius Geller
  • Center of Research in Biomedical Engineering, University of Applied Sciences and Arts Dortmund, 44139 Dortmund, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Werner Pennekamp
  • Institute for Radiological Diagnostics, Interventional Radiology and Nuclear Medicine, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Volkmar Nicolas
  • Institute for Radiological Diagnostics, Interventional Radiology and Nuclear Medicine, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-03-03 | DOI: https://doi.org/10.1515/bmt-2017-0092


Diseases of the cardiovascular system account for nearly 42% of all deaths in the European Union. In Germany, approximately 12,000 patients receive surgical replacement of the aortic valve due to heart valve disease alone each year. A three-dimensional (3D) numerical model based on patient-specific anatomy derived from four-dimensional (4D) magnetic resonance imaging (MRI) data was developed to investigate preoperatively the flow-induced impact of mounting positions of aortic prosthetic valves to select the best orientation for individual patients. Systematic steady-state analysis of blood flow for different rotational mounting positions of the valve is only possible using a virtual patient model. A maximum velocity of 1 m/s was used as an inlet boundary condition, because the opening angle of the valve is at its largest at this velocity. For a comparative serial examination, it is important to define the standardised general requirements to avoid impacts other than the rotated implantation of the prosthetic aortic valve. In this study, a uniform velocity profile at the inlet for the inflow of the aortic valve and the real aortic anatomy were chosen for all simulations. An iterative process, with the weighted parameters flow resistance (1), shear stress (2) and velocity (3), was necessary to determine the best rotated orientation. Blood flow was optimal at a 45° rotation from the standard implantation orientation, which will offer a supply to the coronary arteries.

Keywords: mounting orientation; MRI; numerical simulation; patient-specific; pre-operative; prosthetic bi-leaflet valve


  • [1]

    Eurostat. Health Statistics – Atlas on Mortality in the European Union. Luxembourg: Office for Official Publications of the European Communities (Theme-Population and social conditions), 2009:107–13.Google Scholar

  • [2]

    Destatis. Deaths, by selected causes of death. Federal Statistical Office [published in 2015, accessed July 2015]. Available from https://www.destatis.de/EN/FactsFigures/SocietyState/Health/CausesDeath/Tables/BasicdataCausesDeath.html.

  • [3]

    Krieger T. Gesamtzahl der herzchirurgischen Eingriffe leicht gestiegen. German Society for Thoracic and Cardiovascular Surgery [published 12 February 2015, accessed July 2015]. Available from https://idw-online.de/en/news624647.

  • [4]

    Fleck E, Limberg C. Ein Meilenstein zur Verbesserung der Patientensicherheit. Deutsche Gesellschaft für Kardiologie – Herz- und Kreislaufforschung [published 29 June 2010, accessed in September 2010]. Available from http://www.dgk.org/presse_alt/includes/pdf/20100629Aorten.pdf.

  • [5]

    Geißler HJ, Schlensak C, Südkamp M, Beyersdorf F. Heart valve surgery today. Deutsches Ärzteblatt International 2009;106: 224–34.PubMedGoogle Scholar

  • [6]

    Sotiropoulos F, Le TB, Gilmanov A. Fluid mechanics of heart valves and their replacements. Annu Rev Fluid Mech 2016;48:259–83.CrossrefWeb of ScienceGoogle Scholar

  • [7]

    Kleine P, Scherer M, Abdel-Rahman U, Klesius AA, Ackermann H, Moritz A. Effect of mechanical aortic valve orientation on coronary artery flow: comparison of tilting disc versus bileaflet prostheses in pigs. J Thorac Cardiovasc Surg 2002;124:925–32.CrossrefPubMedGoogle Scholar

  • [8]

    Kheradvar A, Groves EM, Falahatpisheh A, Mofrad MK, Hamed Alavi S, Tranquillo R, et al. Emerging trends in heart valve engineering: part IV. Computational modeling and experimental studies. Ann Biomed Eng 2015;43:2314–33.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [9]

    Hong T, Kim CN. A numerical analysis of the blood flow around the bileaflet mechanical heart valves with different rotational Implantation angles. J Hydrodynam 2011;23:607–14.CrossrefGoogle Scholar

  • [10]

    Pibarot P, Dumesnil JG. Prosthetic heart valves – selection of the optimal prosthesis and long-term management. Circulation 2009;119:1034–48.Web of ScienceCrossrefPubMedGoogle Scholar

  • [11]

    Wurzel D, Panidis I, Gonzales R. In vitro continuous wave Doppler gradients of mechanical valves in less than optimal orientations. ASAIO Trans 1991;37:448–51.Google Scholar

  • [12]

    Laas J, Kleine P, Hasenkam MJ, Nygaard H. Orientation of tilting disc and bileaflet aortic valve substitutes for optimal hemodynamics. Ann Thorac Surg 1999;68:1096–9.PubMedCrossrefGoogle Scholar

  • [13]

    Kleine P, Perthel M, Nygaard H, Hansen SB, Paulsen PK, Riis C, et al. Medtronic Hall versus St. Jude Medical mechanical aortic valve: downstream turbulences with respect to rotation in pigs. J Heart Valve Dis 1998;7:548–55.PubMedGoogle Scholar

  • [14]

    Hartrumpf M, Albes JM, Krempl T, Rudolph V, Wahlers T. The hemodynamic performance of standard bileaflet valves is impaired by a tilted implantation position. Eur J Cardiothorac Surg 2003;23:283–91.PubMedCrossrefGoogle Scholar

  • [15]

    Bongert M, Geller M, Pennekamp W, Nicolas V. Numerical simulation of hemodynamic in the patient-specific aorta after aortic valve replacement based on MRI-data. In: Bennington EH, editor. Horizons in World Cardiovascular Research. Vol. 2. New York: Nova Science Publishers Inc., 2010:247–63.Google Scholar

  • [16]

    Pennekamp W, Geyhan N, Peters S, Nicolas V. Determination of flow profiles of different mechanical aortic valve prostheses using phase-contrast MRI. J Cardiovasc Surg (Torino) 2011;52:277–84.PubMedGoogle Scholar

  • [17]

    Cheng Y, Oertel H, Schenkel T. Fluid-structure coupled CFD simulation of the left ventricular flow during filling phase. Ann Biomed Eng 2005;35:567–76.Google Scholar

  • [18]

    Gao F, Watanabe M, Matsuzawa T. Stress analysis in a layered aortic arch model under pulsatile blood flow. Biomed Eng Online 2006;5:25.CrossrefGoogle Scholar

  • [19]

    Vande Geest J, Wang DHJ, Wisniewski SR, Makaroun MS, Vorp DA. Towards a noninvasive method for determination of patient-specific wall strength distribution in abdominal aortic aneurysms. Ann Biomed Eng 2006;34:1098–106.CrossrefPubMedGoogle Scholar

  • [20]

    Lehmpfuhl M, Hao C, Martirosian P, Schick F. Fluid studies on flow behaviour in narrowing vessels with PC-velocity and numerical simulations. Biomed Tech (Berl) 2009;54:38–47.CrossrefGoogle Scholar

  • [21]

    de Tullio MD, Pascazio G, Weltert L, De Paulis R, Verzicco R. Evaluation of prosthetic-valved devices by means of numerical simulations. Phil Trans R Soc A 2011;369:2502–9.CrossrefGoogle Scholar

  • [22]

    Institute of Thermo- and Fluiddynamic (D). Medizinische Verfahrenstechnik – Ausgewählte Themen der Biofluidmechanik. Bochum: The Institute 2004.Google Scholar

  • [23]

    Dwyer HA, Matthews PB, Azadani A, Jaussaud N, Ge L, Guy TS, et al. Computational fluid dynamics simulation of transcatheter aortic valve degeneration. Interact Cardiovasc Thorac Surg 2009;9:301–8.PubMedCrossrefGoogle Scholar

  • [24]

    Paul R, Apel J, Klaus S, Schügner F, Schwindke P, Reul H. Shear stress related blood damage in laminar couette flow. Artif Organs 2003;27:517–29.CrossrefPubMedGoogle Scholar

  • [25]

    von Knobelsdorff-Brenkenhoff F, Trauzeddel RF, Barker AJ, Gruettner H, Markl M, Schulz-Menger J. Blood flow characteristics in the ascending aorta after aortic valve replacement – a pilot study using 4D-flow MRI. Int J Cardiol 2014;170:426–33.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [26]

    Okafor I, Raghav V, Midha P, Kumar G, Yoganathan A. The hemodynamic effects of acute aortic regurgitation into a stiffened left ventricle resulting from chronic aortic stenosis. Am J Physiol Heart Circ Physiol 2016;310:H1801–7.PubMedCrossrefGoogle Scholar

  • [27]

    Holzapfel GA, Ogden RW. Biomechanical modeling at the molecular, cellular and tissue levels. CISM Courses and Lectures 2009;508:179–258.Google Scholar

  • [28]

    Anssari-Benam A, Bucchi A, Screen HR, Evans SL. A transverse isotropic viscoelastic constitutive model for aortic valve tissue. R Soc Open Sci 2017;4:160585.Web of SciencePubMedCrossrefGoogle Scholar

  • [29]

    Bongert M, Geller M, Pennekamp W, Roggenland D, Nicolas V. Transient simulation of the blood flow in the thoracic aorta based on MRI-data by fluid-structure-interaction. IFMBE Proceedings 2008;22:2614–8.Google Scholar

  • [30]

    Redaelli A, Bothorel H, Votta E, Soncini M, Morbiducci U, Gaudio CD, et al. 3D simulation of the St. Jude Medical bileaflet valve opening process: fluid-structure interaction study and experimental validation. J Heart Valve Dis 2004;13:804–13.Google Scholar

  • [31]

    Wenbin M, Kewei L, Wei S. Fluid-structure interaction study of transcatheter aortic valve dynamics using smoothed particle hydrodynamics. Cardiovasc Eng Technol 2016;7:374–88.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [32]

    Toma M, Einstein DR, Bloodworth CH 4th, Cochran RP, Yoganathan AP, Kunzelman KS. Fluid-structure interaction and structural analyses using a comprehensive mitral valve model with 3D chordal structure. Int J Numer Method Biomed Eng 2017;33: doi: 10.1002/cnm.2815. Epub 2016 Jul 28.PubMedGoogle Scholar

  • [33]

    Haya L, Tavoularis S. Effects of bileaflet mechanical heart valve orientation on fluid stresses and coronary flow. J Fluid Mech 2016;806:129–64.Web of ScienceCrossrefGoogle Scholar

  • [34]

    Le TB, Sotiropoulos F. Fluid-structure interaction of an aortic heart valve prosthesis driven by an animated anatomic left ventricle. J Comput Phys 2013;244:41–62.Web of ScienceCrossrefPubMedGoogle Scholar

  • [35]

    Okafor IU, Santhanakrishnan A, Chaffins BD, Mirabella L, Oshinski JN, Yoganathan AP. Cardiovascular magnetic resonance compatible physical model of the left ventricle for multi-modality characterization of wall motion and hemodynamics. J Cardiovasc Magn Reson 2015;17:51.Web of SciencePubMedCrossrefGoogle Scholar

  • [36]

    Votta E, Le TB, Stevanella M, Fusini L, Caiani EG, Redaelli A, et al. Toward patient-specific simulations of cardiac valves: state-of-the-art and future directions. J Biomech 2013;46: 217–28.CrossrefPubMedWeb of ScienceGoogle Scholar

About the article

Corresponding author: Dipl.-Ing. Markus Bongert, Department of Mechanical Engineering, Research Center for BioMedical Technology (BMT), University of Applied Sciences and Arts Dortmund, Sonnenstr. 96, D-44139 Dortmund, Germany, Phone: +49 231 9112 232, Fax: +49 231 9112 696

Received: 2017-06-11

Accepted: 2017-07-24

Published Online: 2018-03-03

Published in Print: 2019-04-24

Author Statement

Research funding: Authors state no funding involved.

Conflict of interest: The authors have no financial interests or relationships that might lead to any conflict of interest.

Informed consent: Informed consent is not applicable.

Ethical approval: This study was performed in accordance with ethical standards laid down in the 1964 WMA Declaration of Helsinki “Ethical Principles for Medical Research Involving Human Subjects” in its actual constitution.

Citation Information: Biomedical Engineering / Biomedizinische Technik, Volume 64, Issue 2, Pages 147–156, ISSN (Online) 1862-278X, ISSN (Print) 0013-5585, DOI: https://doi.org/10.1515/bmt-2017-0092.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in