Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Engineering / Biomedizinische Technik

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering and the German Society of Biomaterials

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Habibović, Pamela / Haueisen, Jens / Jahnen-Dechent, Wilhelm / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Lenarz, Thomas / Leonhardt, Steffen / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Boenick, Ulrich / Jaramaz, Branislav / Kraft, Marc / Lenthe, Harry / Lo, Benny / Mainardi, Luca / Micera, Silvestro / Penzel, Thomas / Robitzki, Andrea A. / Schaeffter, Tobias / Snedeker, Jess G. / Sörnmo, Leif / Sugano, Nobuhiko / Werner, Jürgen /

IMPACT FACTOR 2017: 1.096
5-year IMPACT FACTOR: 1.492

CiteScore 2017: 0.48

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.356

See all formats and pricing
More options …
Volume 64, Issue 2


Volume 57 (2012)

Determination of optimal positive end-expiratory pressure based on respiratory compliance and electrical impedance tomography: a pilot clinical comparative trial

Jan Karsten
  • Corresponding author
  • Department of Anaesthesiology and Intensive Care Medicine, Hannover Medical School, 30625 Hannover, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nicolas Voigt
  • Department of Anaesthesiology and Intensive Care Medicine, Hannover Medical School, 30625 Hannover, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hans-Joerg Gillmann
  • Department of Anaesthesiology and Intensive Care Medicine, Hannover Medical School, 30625 Hannover, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thomas Stueber
  • Department of Anaesthesiology and Intensive Care Medicine, Hannover Medical School, 30625 Hannover, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-06-06 | DOI: https://doi.org/10.1515/bmt-2017-0103


There is no agreement on gold standard method for positive end-expiratory pressure (PEEP) titration. Electrical impedance tomography (EIT) may aid in finding the optimal PEEP level. In this pilot trial, we investigated potential differences in the suggested optimal PEEP (BestPEEP) as derived by respiratory compliance and EIT-derived parameters. We examined if compliance-derived PEEP differs with regard to the regional ventilation distribution in relation to atelectasis and hyperinflation. Measurements were performed during an incremental/decremental PEEP trial in 15 ventilated intensive care patients suffering from mild-to-moderate impairment of oxygenation due to sepsis, pneumonia, trauma and metabolic and ischemic disorders. Measurement agreement was analyzed using Bland-Altman plots. We observed a diversity of EIT-derived and compliance-based optimal PEEP in the evaluated patients. BestPEEPCompliance did not necessarily correspond to the BestPEEPODCL with the least regional overdistension and collapse. The collapsed area was significantly smaller when the overdistension/collapse index was used for PEEP definition (p=0.022). Our results showed a clinically relevant difference in the suggested optimal PEEP levels when using different parameters for PEEP titration. The compliance-derived PEEP level revealed a higher proportion of residual regional atelectasis as compared to EIT-based PEEP.

Keywords: compliance; critical care; diagnostic imaging; mechanical ventilation


  • [1]

    Brower RG, Lanken PN, MacIntyre N, Matthay MA, Morris A, Ancukiewicz M, et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 2004;351:327–36.CrossrefPubMedGoogle Scholar

  • [2]

    Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med 2013;369:2126–36.PubMedCrossrefGoogle Scholar

  • [3]

    Futier E, Jaber S. Lung-protective ventilation in abdominal surgery. Curr Opin Crit Care 2014;20:426–30.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [4]

    Serpa Neto A, Schultz MJ, Slutsky AS. Current concepts of protective ventilation during general anaesthesia. Swiss Med Wkly 2015;145:w14211.PubMedWeb of ScienceGoogle Scholar

  • [5]

    Cavalcanti AB, Suzumura ÉA, Laranjeira LN, Paisani DM, Damiani LP, Guimarães HP, et al. Effect of lung recruitment and titrated positive end-expiratory pressure (PEEP) vs low PEEP on mortality in patients with acute respiratory distress syndrome: a randomized clinical trial. J Am Med Assoc 2017;318:1335–45.Web of ScienceCrossrefGoogle Scholar

  • [6]

    Meade MO, Cook DJ, Guyatt GH, Slutsky AS, Arabi YM, Cooper DJ, et al. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. J Am Med Assoc 2008;299:637–45.Web of ScienceCrossrefGoogle Scholar

  • [7]

    Mercat A, Richard JC, Vielle B, Jaber S, Osman D, Diehl JL, et al. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. J Am Med Assoc 2008;299:646–55.Web of ScienceCrossrefGoogle Scholar

  • [8]

    The Acute Respiratory Distress Syndrome Network, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000;342:1301–8.CrossrefPubMedGoogle Scholar

  • [9]

    Bikker IG, Preis C, Egal M, Bakker J, Gommers D. Electrical impedance tomography measured at two thoracic levels can visualize the ventilation distribution changes at the bedside during a decremental positive end-expiratory lung pressure trial. Crit Care 2011;15:R193.CrossrefWeb of SciencePubMedGoogle Scholar

  • [10]

    Blankman P, Hasan D, Erik G, Gommers D. Detection of “best” positive end-expiratory pressure derived from electrical impedance tomography parameters during a decremental positive end-expiratory pressure trial. Crit Care 2014;18:R95.CrossrefWeb of ScienceGoogle Scholar

  • [11]

    Bodenstein M, David M, Markstaller K. Principles of electrical impedance tomography and its clinical application. Crit Care Med 2009;37:713–24.CrossrefWeb of SciencePubMedGoogle Scholar

  • [12]

    Costa EL, Lima RG, Amato MB. Electrical impedance tomography. Curr Opin Crit Care 2009;15:18–24.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [13]

    Erlandsson K, Odenstedt H, Lundin S, Stenqvist O. Positive end-expiratory pressure optimization using electric impedance tomography in morbidly obese patients during laparoscopic gastric bypass surgery. Acta Anaesthesiol Scand 2006;50:833–9.CrossrefPubMedGoogle Scholar

  • [14]

    Karsten J, Luepschen H, Grossherr M, Bruch H-P, Leonhardt S, Gehring H, et al. Effect of PEEP on regional ventilation during laparoscopic surgery monitored by electrical impedance tomography. Acta Anaesthesiol Scand 2011;55: 878–86.CrossrefWeb of SciencePubMedGoogle Scholar

  • [15]

    Costa EL, Borges JB, Melo A, Suarez-Sipmann F, Toufen C, Bohm SH, et al. Bedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography. Intensive Care Med 2009;35:1132–7.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [16]

    Lowhagen K, Lundin S, Stenqvist O. Regional intratidal gas distribution in acute lung injury and acute respiratory distress syndrome – assessed by electric impedance tomography. Minerva Anestesiol 2010;76:1024–35.PubMedGoogle Scholar

  • [17]

    Muders T, Luepschen H, Zinserling J, Greschus S, Fimmers R, Guenther U, et al. Tidal recruitment assessed by electrical impedance tomography and computed tomography in a porcine model of lung injury. Crit Care Med 2012;40:903–11.Web of ScienceCrossrefGoogle Scholar

  • [18]

    Zhao Z, Müller-Lisse U, Frerichs I, Fischer R, Möller K. Regional airway obstruction in cystic fibrosis determined by electrical impedance tomography in comparison with high resolution CT. Physiol Meas 2013;34:N107–14.Web of SciencePubMedCrossrefGoogle Scholar

  • [19]

    Zhao Z, Möller K, Steinmann D, Frerichs I, Guttmann J. Evaluation of an electrical impedance tomography-based Global Inhomogeneity Index for pulmonary ventilation distribution. Intensive Care Med 2009;35:1900–6.Web of ScienceCrossrefPubMedGoogle Scholar

  • [20]

    Frerichs I, Hahn G, Golisch W, Kurpitz M, Burchardi H, Hellige G. Monitoring perioperative changes in distribution of pulmonary ventilation by functional electrical impedance tomography. Acta Anaesthesiol Scand 1998;42:721–6.PubMedCrossrefGoogle Scholar

  • [21]

    Luepschen H, Meier T, Grossherr M, Leibecke T, Karsten J, Leonhardt S. Protective ventilation using electrical impedance tomography. Physiol Meas 2007;28:S247–60.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [22]

    Meier T, Luepschen H, Karsten J, Leibecke T, Grossherr M, Gehring H, et al. Assessment of regional lung recruitment and derecruitment during a PEEP trial based on electrical impedance tomography. Intensive Care Med 2008;34:543–50.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [23]

    Gómez-Laberge C, Arnold JH, Wolf GK. A unified approach for EIT imaging of regional overdistension and atelectasis in acute lung injury. IEEE Trans Med Imaging 2012;31:834–42.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [24]

    Karsten J, Grusnick C, Paarmann H, Heringlake M, Heinze H. Positive end-expiratory pressure titration at bedside using electrical impedance tomography in post-operative cardiac surgery patients. Acta Anaesthesiol Scand 2015;59:723–32.CrossrefWeb of SciencePubMedGoogle Scholar

  • [25]

    Hubmayr RD, Malhotra A. Still looking for best PEEP. Anesthesiology 2014;121:445–6.CrossrefPubMedGoogle Scholar

  • [26]

    Suter PM, Fairley B, Isenberg MD. Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med 1975;292:284–9.PubMedCrossrefGoogle Scholar

  • [27]

    Chiumello D, Cressoni M, Carlesso E, Caspani ML, Marino A, Gallazzi E, et al. Bedside selection of positive end-expiratory pressure in mild, moderate, and severe acute respiratory distress syndrome. Crit Care Med 2014;42:252–64.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [28]

    Pintado M-C, de Pablo R, Trascasa M, Milicua J-M, Rogero S, Daguerre M, et al. Individualized PEEP setting in subjects with ARDS: a randomized controlled pilot study. Respir Care 2013;58:1416–23.CrossrefWeb of SciencePubMedGoogle Scholar

  • [29]

    Suarez-Sipmann F, Bohm SH, Tusman G, Pesch T, Thamm O, Reissmann H, et al. Use of dynamic compliance for open lung positive end-expiratory pressure titration in an experimental study. Crit Care Med 2007;35:214–21.CrossrefWeb of ScienceGoogle Scholar

  • [30]

    Sahetya SK, Goligher EC, Brower RG. Fifty years of research in ARDS. Setting positive end-expiratory pressure in acute respiratory distress syndrome. Am J Respir Crit Care Med 2017;195:1429–38.Web of ScienceCrossrefPubMedGoogle Scholar

  • [31]

    Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al.; LUNG SAFE Investigators; ESICM Trials Group. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. J Am Med Assoc 2016;315:788–800.CrossrefGoogle Scholar

  • [32]

    Bikker IG, Blankman P, Specht P, Bakker J, Gommers D. Global and regional parameters to visualize the ‘best’ PEEP during a PEEP trial in a porcine model with and without acute lung injury. Minerva Anestesiol 2013;79:983–92.Google Scholar

  • [33]

    Dargaville PA, Rimensberger PC, Frerichs I. Regional tidal ventilation and compliance during a stepwise vital capacity manoeuvre. Intensive Care Med 2010;36:1953–61.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [34]

    Zick G, Elke G, Becher T, Schadler D, Pulletz S, Freitag-Wolf S, et al. Effect of PEEP and tidal volume on ventilation distribution and end-expiratory lung volume: a prospective experimental animal and pilot clinical study. PLoS One 2013;8:e72675.CrossrefWeb of SciencePubMedGoogle Scholar

  • [35]

    Liu S, Tan L, Möller K, Frerichs I, Yu T, Liu L, et al. Identification of regional overdistension, recruitment and cyclic alveolar collapse with electrical impedance tomography in an experimental ARDS model. Crit Care 2016;20:119.CrossrefWeb of ScienceGoogle Scholar

About the article

Corresponding author: Dr. Jan Karsten, Department of Anaesthesiology and Intensive Care Medicine OE 8050, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany, Phone: +49-176-1532 5648, Fax: +49-511-532 3498

Received: 2017-06-27

Accepted: 2018-05-04

Published Online: 2018-06-06

Published in Print: 2019-04-24

Author Statement

Research funding: Authors state no funding involved.

Conflict of interest: Authors state no conflict of interest.

Informed consent: Written informed consent has been obtained from all individuals.

Ethical approval: The research related to human use complied with all the relevant national regulations and institutional policies, was performed in accordance with the tenets of the Helsinki Declaration, and has been approved by the local Ethics Committee (Ethics committee Hannover Medical School; Prof. Dr. H.D. Troeger, protocol number 2013-6429, 02.05.2013).

Citation Information: Biomedical Engineering / Biomedizinische Technik, Volume 64, Issue 2, Pages 135–145, ISSN (Online) 1862-278X, ISSN (Print) 0013-5585, DOI: https://doi.org/10.1515/bmt-2017-0103.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in