Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Engineering / Biomedizinische Technik

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering and the German Society of Biomaterials

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Habibović, Pamela / Haueisen, Jens / Jahnen-Dechent, Wilhelm / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Lenarz, Thomas / Leonhardt, Steffen / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Boenick, Ulrich / Jaramaz, Branislav / Kraft, Marc / Lenthe, Harry / Lo, Benny / Mainardi, Luca / Micera, Silvestro / Penzel, Thomas / Robitzki, Andrea A. / Schaeffter, Tobias / Snedeker, Jess G. / Sörnmo, Leif / Sugano, Nobuhiko / Werner, Jürgen /

6 Issues per year


IMPACT FACTOR 2016: 0.915
5-year IMPACT FACTOR: 1.263

Online
ISSN
1862-278X
See all formats and pricing
More options …
Ahead of print

Issues

Volume 57 (2012)

Long-term recording performance and biocompatibility of chronically implanted cylindrically-shaped, polymer-based neural interfaces

Richárd Fiáth
  • Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Hungary
  • Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, H-1083 Budapest, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Katharina T. Hofer
  • Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, H-1083 Budapest, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vivien Csikós
  • Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, H-1083 Budapest, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Domonkos Horváth
  • Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Hungary
  • Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, H-1083 Budapest, Hungary
  • School of Ph.D. Studies, Semmelweis University, H-1085 Budapest, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tibor Nánási
  • Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kinga Tóth
  • Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Frederick Pothof
  • Microsystem Materials Laboratory, Department of Microsystems Engineering (IMTEK), University of Freiburg, D-79110 Freiburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christian Böhler
  • Electroactive Coatings Group, Department of Microsystems Engineering (IMTEK), University of Freiburg, D-79110 Freiburg, Germany
  • BrainLinks-BrainTools Cluster of Excellence at the University of Freiburg, D-79110 Freiburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maria Asplund
  • Electroactive Coatings Group, Department of Microsystems Engineering (IMTEK), University of Freiburg, D-79110 Freiburg, Germany
  • BrainLinks-BrainTools Cluster of Excellence at the University of Freiburg, D-79110 Freiburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Patrick Ruther
  • Microsystem Materials Laboratory, Department of Microsystems Engineering (IMTEK), University of Freiburg, D-79110 Freiburg, Germany
  • BrainLinks-BrainTools Cluster of Excellence at the University of Freiburg, D-79110 Freiburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ István Ulbert
  • Corresponding author
  • Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary, Phone: +36-1-382-6801, Fax: +36-1-382-6295
  • Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, H-1083 Budapest, Hungary
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-02-26 | DOI: https://doi.org/10.1515/bmt-2017-0154

Abstract

Stereo-electroencephalography depth electrodes, regularly implanted into drug-resistant patients with focal epilepsy to localize the epileptic focus, have a low channel count (6–12 macro- or microelectrodes), limited spatial resolution (0.5–1 cm) and large contact area of the recording sites (~mm2). Thus, they are not suited for high-density local field potential and multiunit recordings. In this paper, we evaluated the long-term electrophysiological recording performance and histocompatibility of a neural interface consisting of 32 microelectrodes providing a physical shape similar to clinical devices. The cylindrically-shaped depth probes made of polyimide (PI) were chronically implanted for 13 weeks into the brain of rats, while cortical or thalamic activity (local field potentials, single-unit and multi-unit activity) was recorded regularly to monitor the temporal change of several features of the electrophysiological performance. To examine the tissue reaction around the probe, neuron-selective and astroglia-selective immunostaining methods were applied. Stable single-unit and multi-unit activity were recorded for several weeks with the implanted depth probes and a weak or moderate tissue reaction was found around the probe track. Our data on biocompatibility presented here and in vivo experiments in non-human primates provide a strong indication that this type of neural probe can be applied in stereo-electroencephalography recordings of up to 2 weeks in humans targeting the localization of epileptic foci providing an increased spatial resolution and the ability to monitor local field potentials and neuronal spiking activity.

Keywords: depth probe; electrophysiological performance; histocompatibility; multielectrode recording; single-unit activity; stereo-electroencephalography

References

  • [1]

    Engel AK, Moll CK, Fried I, Ojemann GA. Invasive recordings from the human brain: clinical insights and beyond. Nat Rev Neurosci 2005;6:35–47.PubMedCrossrefGoogle Scholar

  • [2]

    Alvarado-Rojas C, Lehongre K, Bagdasaryan J, Bragin A, Staba R, Engel J Jr, et al. Single-unit activities during epileptic discharges in the human hippocampal formation. Front Comput Neurosci 2013;7:140.PubMedWeb of ScienceGoogle Scholar

  • [3]

    Worrell GA, Gardner AB, Stead SM, Hu S, Goerss S, Cascino GJ, et al. High-frequency oscillations in human temporal lobe: simultaneous microwire and clinical macroelectrode recordings. Brain 2008;131:928–37.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [4]

    Misra A, Burke JF, Ramayya AG, Jacobs J, Sperling MR, Moxon KA, et al. Methods for implantation of micro-wire bundles and optimization of single/multi-unit recordings from human mesial temporal lobe. J Neural Eng 2014;11:026013.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [5]

    Avanzini P, Abdollahi RO, Sartori I, Caruana F, Pelliccia V, Casaceli G, et al. Four-dimensional maps of the human somatosensory system. Proc Natl Acad Sci USA 2016;113:E1936–43.CrossrefGoogle Scholar

  • [6]

    Hefft S, Brandt A, Zwick S, von Elverfeldt D, Mader I, Cordeiro J, et al. Safety of hybrid electrodes for single-neuron recordings in humans. Neurosurgery 2013;73:78–85; discussion 85.Web of ScienceCrossrefPubMedGoogle Scholar

  • [7]

    Mormann F, Kornblith S, Cerf M, Ison MJ, Kraskov A, Tran M, et al. Scene-selective coding by single neurons in the human parahippocampal cortex. Proc Natl Acad Sci USA 2017;114:1153–8.CrossrefGoogle Scholar

  • [8]

    Pothof F, Anees S, Leupold J, Bonini L, Paul O, Orban GA, et al. Fabrication and characterization of a high-resolution neural probe for stereoelectroencephalography and single neuron recording. Conf Proc IEEE Eng Med Biol Soc 2014;2014: 5244–7.PubMedGoogle Scholar

  • [9]

    Pothof F, Bonini L, Lanzilotto M, Livi A, Fogassi L, Orban GA, et al. Chronic neural probe for simultaneous recording of single-unit, multi-unit, and local field potential activity from multiple brain sites. J Neural Eng 2016;13:046006.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [10]

    Polikov VS, Tresco PA, Reichert WM. Response of brain tissue to chronically implanted neural electrodes. J Neurosci Methods 2005;148:1–18.PubMedCrossrefGoogle Scholar

  • [11]

    Kozai TD, Jaquins-Gerstl AS, Vazquez AL, Michael AC, Cui XT. Brain tissue responses to neural implants impact signal sensitivity and intervention strategies. ACS Chem Neurosci 2015;6:48–67.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [12]

    Boehler C, Stieglitz T, Asplund M. Nanostructured platinum grass enables superior impedance reduction for neural microelectrodes. Biomaterials 2015;67:346–53.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [13]

    Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. 6th ed. San Diego: Academic Press/Elsevier; 2007.Google Scholar

  • [14]

    Fiath R, Beregszaszi P, Horvath D, Wittner L, Aarts AA, Ruther P, et al. Large-scale recording of thalamocortical circuits: in vivo electrophysiology with the two-dimensional electronic depth control silicon probe. J Neurophysiol 2016;116:2312–30.CrossrefWeb of SciencePubMedGoogle Scholar

  • [15]

    Csicsvari J, Hirase H, Czurko A, Buzsaki G. Reliability and state dependence of pyramidal cell-interneuron synapses in the hippocampus: an ensemble approach in the behaving rat. Neuron 1998;21:179–89.PubMedCrossrefGoogle Scholar

  • [16]

    Hazan L, Zugaro M, Buzsaki G. Klusters, NeuroScope, NDManager: a free software suite for neurophysiological data processing and visualization. J Neurosci Methods 2006;155:207–16.CrossrefPubMedGoogle Scholar

  • [17]

    Seidl K, Torfs T, De Maziere PA, Van Dijck G, Csercsa R, Dombovari B, et al. Control and data acquisition software for high-density CMOS-based microprobe arrays implementing electronic depth control. Biomed Tech (Berl) 2010;55:183–91.CrossrefPubMedGoogle Scholar

  • [18]

    Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 2012;9:671–5.Web of ScienceCrossrefPubMedGoogle Scholar

  • [19]

    Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods 2012;9:676–82.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [20]

    Fiath R, Kerekes BP, Wittner L, Toth K, Beregszaszi P, Horvath D, et al. Laminar analysis of the slow wave activity in the somatosensory cortex of anesthetized rats. Eur J Neurosci 2016;44:1935–51.PubMedWeb of ScienceGoogle Scholar

  • [21]

    Slezia A, Hangya B, Ulbert I, Acsady L. Phase advancement and nucleus-specific timing of thalamocortical activity during slow cortical oscillation. J Neurosci 2011;31:607–17.Web of ScienceCrossrefPubMedGoogle Scholar

  • [22]

    Vetter RJ, Williams JC, Hetke JF, Nunamaker EA, Kipke DR. Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex. IEEE Trans Biomed Eng 2004;51:896–904.PubMedCrossrefGoogle Scholar

  • [23]

    Han M, Manoonkitiwongsa PS, Wang CX, McCreery DB. In vivo validation of custom-designed silicon-based microelectrode arrays for long-term neural recording and stimulation. IEEE Trans Biomed Eng 2012;59:346–54.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [24]

    Patel PR, Zhang H, Robbins MT, Nofar JB, Marshall SP, Kobylarek MJ, et al. Chronic in vivo stability assessment of carbon fiber microelectrode arrays. J Neural Eng 2016;13:066002.Web of SciencePubMedCrossrefGoogle Scholar

  • [25]

    Boehler C, Oberueber F, Stieglitz T, Asplund M. Nanostructured platinum as an electrochemically and mechanically stable electrode coating. In: 39th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Seogwipo, South Korea, July 11–15, 2017. Piscataway, NJ: IEEE; 2017:1058–61.Google Scholar

  • [26]

    Kozai TD, Marzullo TC, Hooi F, Langhals NB, Majewska AK, Brown EB, et al. Reduction of neurovascular damage resulting from microelectrode insertion into the cerebral cortex using in vivo two-photon mapping. J Neural Eng 2010;7:046011.CrossrefWeb of SciencePubMedGoogle Scholar

  • [27]

    Prasad A, Xue QS, Sankar V, Nishida T, Shaw G, Streit WJ, et al. Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants. J Neural Eng 2012;9:056015.CrossrefWeb of SciencePubMedGoogle Scholar

  • [28]

    Barrese JC, Rao N, Paroo K, Triebwasser C, Vargas-Irwin C, Franquemont L, et al. Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates. J Neural Eng 2013;10:066014.Web of ScienceCrossrefPubMedGoogle Scholar

  • [29]

    Kozai TD, Catt K, Li X, Gugel ZV, Olafsson VT, Vazquez AL, et al. Mechanical failure modes of chronically implanted planar silicon-based neural probes for laminar recording. Biomaterials 2015;37:25–39.CrossrefWeb of SciencePubMedGoogle Scholar

  • [30]

    Gray CM, Maldonado PE, Wilson M, McNaughton B. Tetrodes markedly improve the reliability and yield of multiple single-unit isolation from multi-unit recordings in cat striate cortex. J Neurosci Methods 1995;63:43–54.CrossrefPubMedGoogle Scholar

  • [31]

    Harris KD, Henze DA, Csicsvari J, Hirase H, Buzsaki G. Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. J Neurophysiol 2000;84:401–14.CrossrefPubMedGoogle Scholar

  • [32]

    Rey HG, Pedreira C, Quiroga RQ. Past, present and future of spike sorting techniques. Brain Res Bull 2015;119:106–17.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [33]

    Karumbaiah L, Saxena T, Carlson D, Patil K, Patkar R, Gaupp EA, et al. Relationship between intracortical electrode design and chronic recording function. Biomaterials 2013;34:8061–74.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [34]

    Kozai TD, Langhals NB, Patel PR, Deng X, Zhang H, Smith KL, et al. Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nat Mater 2012;11:1065–73.CrossrefWeb of SciencePubMedGoogle Scholar

  • [35]

    Seymour JP, Kipke DR. Neural probe design for reduced tissue encapsulation in CNS. Biomaterials 2007;28:3594–607.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [36]

    Saxena T, Karumbaiah L, Gaupp EA, Patkar R, Patil K, Betancur M, et al. The impact of chronic blood-brain barrier breach on intracortical electrode function. Biomaterials 2013;34:4703–13.CrossrefWeb of SciencePubMedGoogle Scholar

  • [37]

    Okun M, Lak A, Carandini M, Harris KD. Long term recordings with immobile silicon probes in the mouse cortex. PLoS One 2016;11:e0151180.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [38]

    Ludwig KA, Langhals NB, Joseph MD, Richardson-Burns SM, Hendricks JL, Kipke DR. Poly(3,4-ethylenedioxythiophene) (PEDOT) polymer coatings facilitate smaller neural recording electrodes. J Neural Eng 2011;8:014001.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [39]

    Marton G, Bakos I, Fekete Z, Ulbert I, Pongracz A. Durability of high surface area platinum deposits on microelectrode arrays for acute neural recordings. J Mater Sci Mater Med 2014;25:931–40.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [40]

    Nolta NF, Christensen MB, Crane PD, Skousen JL, Tresco PA. BBB leakage, astrogliosis, and tissue loss correlate with silicon microelectrode array recording performance. Biomaterials 2015;53:753–62.CrossrefWeb of SciencePubMedGoogle Scholar

  • [41]

    Xue M, Del Bigio MR. Intracortical hemorrhage injury in rats: relationship between blood fractions and brain cell death. Stroke 2000;31:1721–7.CrossrefPubMedGoogle Scholar

  • [42]

    Biran R, Martin DC, Tresco PA. The brain tissue response to implanted silicon microelectrode arrays is increased when the device is tethered to the skull. J Biomed Mater Res A 2007;82:169–78.PubMedWeb of ScienceGoogle Scholar

  • [43]

    Ersen A, Elkabes S, Freedman DS, Sahin M. Chronic tissue response to untethered microelectrode implants in the rat brain and spinal cord. J Neural Eng 2015;12:016019.CrossrefPubMedWeb of ScienceGoogle Scholar

About the article

Received: 2017-08-30

Accepted: 2017-11-20

Published Online: 2018-02-26


Author Statement

Research funding: The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 600925 (NeuroSeeker), the Hungarian Brain Research Program Grants (Grant Nos. KTIA_13_NAP-A-I/1, KTIA-13-NAP-A-IV/1-4,6 and 2017-1.2.1-NKP-2017-00002) and was supported by BrainLinks-BrainTools, Cluster of Excellence funded by the German Research Foundation (DFG, grant number EXC 1086). The research within project No. VEKOP-2.3.2-16-2017-00013 by I. Ulbert and D. Horváth was supported by the European Union and the State of Hungary, co-financed by the European Regional Development Fund. R. Fiáth and K. Tóth have received funding from the Hungarian National Research, Development and Innovation Office (Grant Nos. PD124175 and PD121123).

Conflict of interest: The authors declare no conflict of interests.


Citation Information: Biomedical Engineering / Biomedizinische Technik, 20170154, ISSN (Online) 1862-278X, ISSN (Print) 0013-5585, DOI: https://doi.org/10.1515/bmt-2017-0154.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in