Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Engineering / Biomedizinische Technik

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering and the German Society of Biomaterials

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Habibović, Pamela / Haueisen, Jens / Jahnen-Dechent, Wilhelm / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Lenarz, Thomas / Leonhardt, Steffen / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Boenick, Ulrich / Jaramaz, Branislav / Kraft, Marc / Lenthe, Harry / Lo, Benny / Mainardi, Luca / Micera, Silvestro / Penzel, Thomas / Robitzki, Andrea A. / Schaeffter, Tobias / Snedeker, Jess G. / Sörnmo, Leif / Sugano, Nobuhiko / Werner, Jürgen /


IMPACT FACTOR 2017: 1.096
5-year IMPACT FACTOR: 1.492

CiteScore 2017: 0.48

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.356

Online
ISSN
1862-278X
See all formats and pricing
More options …
Ahead of print

Issues

Volume 57 (2012)

A versatile perfusion bioreactor and endothelializable photo cross-linked tubes of gelatin methacryloyl as promising tools in tissue engineering

Birgit Huber
  • University of Stuttgart, Institute of Interfacial Process Engineering and Plasma Technology, Stuttgart, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eva Hoch
  • University of Stuttgart, Institute of Interfacial Process Engineering and Plasma Technology, Stuttgart, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Iván Calderon / Kirsten Borchers
  • University of Stuttgart, Institute of Interfacial Process Engineering and Plasma Technology, Stuttgart, Germany
  • Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Petra J. Kluger
  • Corresponding author
  • Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
  • Reutlingen University, Alteburgstraße 150, Reutlingen 72762, Germany, Phone: +49 7121–271 2061
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-09-18 | DOI: https://doi.org/10.1515/bmt-2018-0015

Abstract

Size and function of bioartificial tissue models are still limited due to the lack of blood vessels and dynamic perfusion for nutrient supply. In this study, we evaluated the use of cytocompatible methacryl-modified gelatin for the fabrication of a hydrogel-based tube by dip-coating and subsequent photo-initiated cross-linking. The wall thickness of the tubes and the diameter were tuned by the degree of gelatin methacryl-modification and the number of dipping cycles. The dipping temperature of the gelatin solution was adjusted to achieve low viscous fluids of approximately 0.1 Pa s and was different for gelatin derivatives with different modification degrees. A versatile perfusion bioreactor for the supply of surrounding tissue models was developed, which can be adapted to several geometries and sizes of blood-vessel mimicking tubes. The manufactured bendable gelatin tubes were permeable for water and dissolved substances, like Nile Blue and serum albumin. As a proof of concept, human fibroblasts in a three-dimensional collagen tissue model were successfully supplied with nutrients via the central gelatin tube under dynamic conditions for 2 days. Moreover, the tubes could be used as scaffolds to build-up a functional and viable endothelial layer. Hence, the presented tools can contribute to solving current challenges in tissue engineering.

Keywords: dip-coating; endothelial cells; fibroblasts; methacryl-modified gelatin; perfusion bioreactor; tubular perfusion system; vascularized tissue engineering

References

  • [1]

    Khademhosseini A, Langer R, Borenstein J, Vacanti JP. Microscale technologies for tissue engineering and biology. Proc Natl Acad Sci USA 2006;103:2480–7.CrossrefGoogle Scholar

  • [2]

    Langer R, Vacanti JP. Tissue engineering. Science 1993;260:920–6.PubMedCrossrefGoogle Scholar

  • [3]

    Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000;407:249–57.PubMedCrossrefGoogle Scholar

  • [4]

    Kannan RY, Salacinski HJ, Sales K, Butler P, Seifalian AM. The roles of tissue engineering and vascularisation in the development of micro-vascular networks: a review. Biomaterials 2005;26:1857–75.PubMedCrossrefGoogle Scholar

  • [5]

    Novosel EC, Kleinhans C, Kluger PJ. Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev 2011;63:300–11.Web of SciencePubMedCrossrefGoogle Scholar

  • [6]

    Burton AC. Relation of structure to function of the tissues of the wall of blood vessels. Physiol Rev 1954;34:619–42.CrossrefPubMedGoogle Scholar

  • [7]

    Syazwani N, Azhim A, Morimoto Y, Furukawa KS, Ushida T. Decellularization of aorta tissue using sonication treatment as potential scaffold for vascular tissue engineering. J Med Biol Eng 2015;35:258–69.Web of ScienceCrossrefGoogle Scholar

  • [8]

    L’Heureux N, Pâquet S, Labbé R, Germain L, Auger FA. A completely biological tissue-engineered human blood vessel. FASEB J 1998;12:47–56.PubMedCrossrefGoogle Scholar

  • [9]

    Hoch E, Tovar GE, Borchers K. Bioprinting of artificial blood vessels: current approaches towards a demanding goal. Eur J Cardiothorac Surg 2014;46:767–78.PubMedCrossrefGoogle Scholar

  • [10]

    Datta P, Ayan B, Ozbolat IT. Bioprinting for vascular and vascularized tissue biofabrication. Acta Biomater 2017;51:1–20.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [11]

    Huber B, Engelhardt S, Meyer W, Krüger H, Wenz A, Schönhaar V, et al. Blood-vessel mimicking structures by stereolithographic fabrication of small porous tubes using cytocompatible polyacrylate elastomers, biofunctionalization and endothelialization. J Funct Biomater 2016;7:11.CrossrefGoogle Scholar

  • [12]

    Baudis S, Nehl F, Ligon SC, Nigisch A, Bergmeister H, Bernhard D, et al. Elastomeric degradable biomaterials by photopolymerization-based CAD-CAM for vascular tissue engineering. Biomed Mater 2011;6:055003.Web of ScienceCrossrefPubMedGoogle Scholar

  • [13]

    Nguyen DH, Stapleton SC, Yang MT, Cha SS, Choi CK, Galie PA, et al. Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro. Proc Natl Acad Sci USA 2013;110:6712–7.CrossrefGoogle Scholar

  • [14]

    Asakawa N, Shimizu T, Tsuda Y, Sekiya S, Sasagawa T, Yamato M, et al. Pre-vascularization of in vitro three-dimensional tissues created by cell sheet engineering. Biomaterials 2010;31:3903–9.Web of ScienceCrossrefPubMedGoogle Scholar

  • [15]

    Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen DH, Cohen DM, et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater 2012;11:768–74.Web of ScienceCrossrefPubMedGoogle Scholar

  • [16]

    Sekine H, Shimizu T, Sakaguchi K, Dobashi I, Wada M, Yamato M, et al. In vitro fabrication of functional three-dimensional tissues with perfusable blood vessels. Nat Commun 2013;4:1399.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [17]

    Tocchio A, Tamplenizza M, Martello F, Gerges I, Rossi E, Argentiere S, et al. Versatile fabrication of vascularizable scaffolds for large tissue engineering in bioreactor. Biomaterials 2015;45:124–31.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [18]

    Sakaguchi K, Shimizu T, Horaguchi S, Sekine H, Yamato M, Umezu M, et al. In vitro engineering of vascularized tissue surrogates. Sci Rep 2013;3:1316.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [19]

    Hoch E, Schuh C, Hirth T, Tovar GE, Borchers K. Stiff gelatin hydrogels can be photo-chemically synthesized from low viscous gelatin solutions using molecularly functionalized gelatin with a high degree of methacrylation. J Mater Sci Mater Med 2012;23:2607–17.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [20]

    Hoch E, Hirth T, Tovar GE, Borchers K. Chemical tailoring of gelatin to adjust its chemical and physical properties for functional bioprinting. J Mater Chem B 2013;1:5675–85.CrossrefWeb of ScienceGoogle Scholar

  • [21]

    Wenz A, Janke K, Hoch E, Tovar GE, Borchers K, Kluger PJ. Hydroxyapatite-modified gelatin bioinks for bone bioprinting. BioNanoMaterials 2016;17:179.Google Scholar

  • [22]

    Wenz A, Borchers K, Tovar GE, Kluger PJ. Bone matrix production in hydroxyapatite-modified hydrogels suitable for bone bioprinting. Biofabrication 2017;9:044103.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [23]

    Claaßen C, Claaßen MH, Truffault V, Sewald L, Tovar GE, Borchers K, et al. Quantification of substitution of gelatin methacryloyl: best practice and current pitfalls. Biomacromolecules 2018;19:42–52.Web of SciencePubMedCrossrefGoogle Scholar

  • [24]

    Schuerlein S, Schwarz T, Krziminski S, Gätzner S, Hoppensack A, Schwedhelm I, et al. A versatile modular bioreactor platform for tissue engineering. Biotech J 2017;12:1600326.CrossrefGoogle Scholar

  • [25]

    Stephenson M, Grayson W. Recent advances in bioreactors for cell-based therapies. F1000Res 2018;7:517.CrossrefGoogle Scholar

  • [26]

    Wolf F, Rojas González DM, Steinseifer U, Obdenbusch M, Herfs W, Brecher C, et al. VascuTrainer: a mobile and disposable bioreactor system for the conditioning of tissue-engineered vascular grafts. Ann Biomed Eng 2018;46:616–26.CrossrefWeb of SciencePubMedGoogle Scholar

  • [27]

    Van Den Bulcke AI, Bogdanov B, De Rooze N, Schacht EH, Cornelissen M, Berghmans H. Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules 2000;1:31–8.PubMedCrossrefGoogle Scholar

  • [28]

    Fairbanks BD, Schwartz MP, Bowman CN, Anseth KS. Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility. Biomaterials 2009;30:6702–7.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [29]

    Engelhardt S, Hoch E, Borchers K, Meyer W, Krüger H, Tovar G, et al. Fabrication of 2D protein microstructures and 3D polymer–protein hybrid microstructures by two-photon polymerization. Biofabrication 2011;3:025003.CrossrefWeb of SciencePubMedGoogle Scholar

  • [30]

    Kluger PJ, Wyrwa R, Weisser J, Maierle J, Votteler M, Rode C, et al. Electrospun poly(D/L-lactide-co-L-lactide) hybrid matrix: a novel scaffold material for soft tissue engineering. J Mater Sci Mater Med 2010;21:2665–71.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [31]

    Huber B, Czaja AM, Kluger PJ. Influence of epidermal growth factor (EGF) and hydrocortisone on the co-culture of mature adipocytes and endothelial cells for vascularized adipose tissue engineering. Cell Biol Int 2016;40:569–78.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [32]

    Schrieber R, Gareis H. Gelatine Handbook. Weinheim, Germany: WILEY-VCH Verlag GmbH & Co.; 2007.Google Scholar

  • [33]

    Huber B, Link A, Linke K, Gehrke SA, Winnefeld M, Kluger PJ. Integration of mature adipocytes to build-up a functional three-layered full-skin equivalent. Tissue Eng Part C Methods 2016;22:756–64.CrossrefWeb of SciencePubMedGoogle Scholar

  • [34]

    Hahn MS, McHale MK, Wang E, Schmedlen RH, West JL. Physiologic pulsatile flow bioreactor conditioning of poly(ethylene glycol)-based tissue engineered vascular grafts. Ann Biomed Eng 2007;35:190–200.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [35]

    Iwasaki K, Kojima K, Kodama S, Paz AC, Chambers M, Umezu M, et al. Bioengineered three-layered robust and elastic artery using hemodynamically-equivalent pulsatile bioreactor. Circulation 2008;118:S52–7.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [36]

    Cardinal KO, Bonnema GT, Hofer H, Barton JK, Williams SK. Tissue-engineered vascular grafts as in vitro blood vessel mimics for the evaluation of endothelialization of intravascular devices. Tissue Eng 2006;12:3431–8.CrossrefPubMedGoogle Scholar

  • [37]

    Xu J, Ge H, Zhou X, Yang D, Guo T, He J, et al. Tissue-engineered vessel strengthens quickly under physiological deformation: application of a new perfusion bioreactor with machine vision. J Vasc Res 2005;42:503–8.PubMedCrossrefGoogle Scholar

  • [38]

    Groeber F, Kahlig A, Loff S, Walles H, Hansmann J. A bioreactor system for interfacial culture and physiological perfusion of vascularized tissue equivalents. Biotechnol J 2013;8:308–16.CrossrefWeb of SciencePubMedGoogle Scholar

  • [39]

    Ward A, Quinn KP, Bellas E, Georgakoudi I, Kaplan DL. Noninvasive metabolic imaging of engineered 3D human adipose tissue in a perfusion bioreactor. PLoS One 2013;8:e55696.CrossrefWeb of ScienceGoogle Scholar

  • [40]

    Villalona GA, Udelsman B, Duncan DR, McGillicuddy E, Sawh-Martinez RF, Hibino N, et al. Cell-seeding techniques in vascular tissue engineering. Tissue Eng Part B Rev 2010;16:341–50.Web of SciencePubMedCrossrefGoogle Scholar

  • [41]

    Soletti L, Nieponice A, Guan J, Stankus JJ, Wagner WR, Vorp DA. A seeding device for tissue engineered tubular structures. Biomaterials 2006;27:4863–70.PubMedCrossrefGoogle Scholar

About the article

aKirsten Borchers and Petra J. Kluger: These authors contributed equally to this work.


Received: 2018-01-29

Accepted: 2018-08-06

Published Online: 2018-09-18


Author Statement

Research funding: This work was supported by the European Commission under the Seventh Framework Program, Funder Id: 10.13039/100011102 (grant agreement no. 263416).

Conflict of interest: Authors state no conflict of interest.

Informed consent: All patients gave a written agreement according to the permission of the Landesärztekammer Baden-Württemberg (F-2012-078; for normal skin from elective surgeries).

Ethical approval: The research related to human use complied with all the relevant national regulations and institutional policies, was performed in accordance with the tenets of the Helsinki Declaration, and has been approved by the local Ethics Committee.


Citation Information: Biomedical Engineering / Biomedizinische Technik, 20180015, ISSN (Online) 1862-278X, ISSN (Print) 0013-5585, DOI: https://doi.org/10.1515/bmt-2018-0015.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in