Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Engineering / Biomedizinische Technik

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering and the German Society of Biomaterials

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Habibović, Pamela / Haueisen, Jens / Jahnen-Dechent, Wilhelm / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Lenarz, Thomas / Leonhardt, Steffen / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Boenick, Ulrich / Jaramaz, Branislav / Kraft, Marc / Lenthe, Harry / Lo, Benny / Mainardi, Luca / Micera, Silvestro / Penzel, Thomas / Robitzki, Andrea A. / Schaeffter, Tobias / Snedeker, Jess G. / Sörnmo, Leif / Sugano, Nobuhiko / Werner, Jürgen /

IMPACT FACTOR 2017: 1.096
5-year IMPACT FACTOR: 1.492

CiteScore 2017: 0.48

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.356

See all formats and pricing
More options …
Ahead of print


Volume 57 (2012)

On the feasibility of a liquid crystal polymer pressure sensor for intracranial pressure measurement

Preedipat Sattayasoonthorn
  • Center for Biomedical and Robotics Technology (BART LAB), Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Salaya, Thailand
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jackrit SuthakornORCID iD: https://orcid.org/0000-0003-1333-3982 / Sorayouth Chamnanvej
  • Neurosurgery Division, Department of Surgery, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-03-15 | DOI: https://doi.org/10.1515/bmt-2018-0029


Intracranial pressure (ICP) monitoring is crucial in determining the appropriate treatment in traumatic brain injury. Minimally invasive approaches to monitor ICP are subject to ongoing research because they are expected to reduce infections and complications associated with conventional devices. This study aims to develop a wireless ICP monitoring device that is biocompatible, miniature and implantable. Liquid crystal polymer (LCP) was selected to be the main material for the device fabrication. This study considers the design, fabrication and testing of the sensing unit of the proposed wireless ICP monitoring device. A piezoresistive pressure sensor was designed to respond to 0–50 mm Hg applied pressure and fabricated on LCP by standard microelectromechanical systems (MEMS) procedures. The fabricated LCP pressure sensor was studied in a moist environment by means of a hydrostatic pressure test. The results showed a relative change in voltage and pressure from which the sensor’s sensitivity was deduced. This was a proof-of-concept study and based on the results of this study, a number of recommendations for improving the considered sensor performance were made. The limitations are discussed, and future design modifications are proposed that should lead to a complete LCP package with an improved performance for wireless, minimally invasive ICP monitoring.

Keywords: hydrostatic experiment; intracranial pressure (ICP); liquid crystal polymer (LCP); MEMS; moist environment; piezoresistive pressure sensor; strain gauge; Wheatstone bridge


  • [1]

    Surgeons BTFAA of NSC of N. Guidelines for the management of severe traumatic brain injury. 3rd ed. J Neurosurg 2007;24(Suppl. 212):S1–106.Google Scholar

  • [2]

    Schwarzbold M, Diaz A, Martins ET, Rufino A, Amante LN, Thais ME, et al. Psychiatric disorders and traumatic brain injury. Neuropsychiatr Dis Treat 2008;4:797–816.PubMedGoogle Scholar

  • [3]

    Roytowski D, Figaji A. Raised intracranial pressure: what it is and how to recognise it. Contin Med Educ 2013;31:390–5.Google Scholar

  • [4]

    Zhong J, Dujovny M, Park HK, Perez E, Perlin AR, Diaz FG. Advances in ICP monitoring techniques. Neurol Res 2003;25:339–50.CrossrefPubMedGoogle Scholar

  • [5]

    Lavinio A, Menon DK. Intracranial pressure: why we monitor it, how to monitor it, what to do with the number and what’s the future? Curr Opin Anaesthesiol 2011;24:117–23.CrossrefGoogle Scholar

  • [6]

    Steiner LA, Andrews PJD. Monitoring the injured brain: ICP and CBF. Br J Anaesth 2006;97:26–38.PubMedCrossrefGoogle Scholar

  • [7]

    Recommendations for Intracranial Pressure Monitoring Technology. J Neurotrauma 2000;17:497–506.PubMedGoogle Scholar

  • [8]

    Kawoos U, McCarron RM, Auker CR, Chavko M. Advances in intracranial pressure monitoring and its significance in managing traumatic brain injury. Int J Mol Sci 2015;16:28979–97.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [9]

    Hodgins D, Bertsch A, Post N, Frischholz M, Volckaerts B, Spensley J, et al. Healthy aims: developing new medical implants and diagnostic equipment. IEEE Pervasive Comput 2008;7:14–20.CrossrefGoogle Scholar

  • [10]

    Stehlin E, Malpas SC, Budgett DM, Barrett CJ, McCormick D, Whalley G, et al. Chronic measurement of left ventricular pressure in freely moving rats. J Appl Physiol 2013;115:1672–82.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [11]

    Kiefer M, Antes S, Schmitt M, Krause I, Eymann R. Long-term performance of a CE-approved telemetric intracranial pressure monitoring. In: Proceedings of the Annual International Confonerence of the IEEE Engineering Medical Biological Society. EMBS 2011:2246–9.Google Scholar

  • [12]

    Nader N, Morgan CH, Goetzinger DJ, Massoud-Ansari S. Sensor unit and procedure for monitoring intracranial physiological properties [https://www.google.com/patents/us8343068#forward-citations]. US 8,343,068 B2. Jan. 1, 2013; US 8,343,068 B2.

  • [13]

    Kawoos U, Meng X, Tofighi M, Rosen A. Too much pressure: wireless intracranial pressure monitoring and its application in traumatic brain injuries. Sci Am 2015;16:39–53.Google Scholar

  • [14]

    Kawoos U, Tofighi M-R, Warty R, Kralick FA, Rosen A. In-vitro and in-vivo trans-scalp evaluation of an intracranial pressure implant at 2.4 GHz. IEEE Trans Microw Theory Tech 2008;56:2356–65.Web of ScienceCrossrefGoogle Scholar

  • [15]

    Kawoos U. Embedded wireless intracranial pressure monitoring implant at microwave frequencies [Ph.D. Thesis]. Philadelphia (PA): Drexel University; 2009.Google Scholar

  • [16]

    Chang WY, Chu CH, Lin YC. A flexible piezoelectric sensor for microfluidic applications using polyvinylidene fluoride. IEEE Sens J 2008;8:495–500.CrossrefWeb of ScienceGoogle Scholar

  • [17]

    Chow EY, Ha D, Lin TY, deVries WN, John SWM, Chappell WJ, et al. Sub-cubic millimeter intraocular pressure monitoring implant to enable genetic studies on pressure-induced neurodegeneration. In: 2010 Annual International Conference. IEEE Eng Med Biol Soc, EMBC’10. 2010:6429–32.Google Scholar

  • [18]

    Clausen I, Glott T. Development of clinically relevant implantable pressure sensors: perspectives and challenges. Sensors (Switzerland) 2014;14:17686–702.CrossrefGoogle Scholar

  • [19]

    James T, Mannoor MS, Ivanov DV. BioMEMS – advancing the frontiers of medicine. Sensors 2008;8:6077–107.Web of ScienceCrossrefGoogle Scholar

  • [20]

    Löffler S, Xie Y, Klimach P, Richter A, Detemple P, Stieglitz T, et al. Long term in vivo stability and frequency response of polyimide based flexible array probes. Biomed Tech 2012;57(Suppl. 1 TRACK-S):104–7.Google Scholar

  • [21]

    Masi BC, Tyler BM, Bow H, Wicks RT, Xue Y, Brem H, et al. Intracranial MEMS based temozolomide delivery in a 9L rat gliosarcoma model. Biomaterials 2012;33:5768–75.Web of ScienceCrossrefGoogle Scholar

  • [22]

    Shu Y, Li C, Wang Z, Mi W, Li Y, Ren TL. A pressure sensing system for heart rate monitoring with polymer-based pressure sensors and an anti-interference post processing circuit. Sensors (Switzerland) 2015;15:3224–35.CrossrefGoogle Scholar

  • [23]

    Yu L, Kim BJ, Meng E. Chronically implanted pressure sensors: challenges and state of the field. Sensors (Switzerland) 2014;14:20620–44.CrossrefGoogle Scholar

  • [24]

    Ginggen A, Tardy Y, Crivelli R, Bork T, Renaud P. A telemetric pressure sensor system for biomedical applications. IEEE Trans Biomed Eng 2008;55:1374–81.CrossrefWeb of SciencePubMedGoogle Scholar

  • [25]

    Ghannad-Rezaie M, Yang LJS, Garton HJL, Chronis N. A near-infrared optomechanical intracranial pressure microsensor. J Microelectromech Syst 2012;21:23–33.Web of ScienceCrossrefGoogle Scholar

  • [26]

    Bee M, Trieu HK, Müller J. Foldable polymer patches with implemented pressure sensors. Biomed Eng/Biomed Tech 2013;58:24–5.Google Scholar

  • [27]

    Liu C. Recent developments in polymer MEMS. Adv Mater 2007;19:3783–90.CrossrefWeb of ScienceGoogle Scholar

  • [28]

    Löffler S, Xie Y, Detemple P, Moser A, Hofmann UG. An implantation technique for polyimide based flexible array probes facilitating neuronavigation and chronic implantation. Biomed Tech 2012;57(SUPPL. 1 TRACK-S):858–61.Google Scholar

  • [29]

    Fonseca MA. Polymer/ceramic wireless MEMS pressure sensors for harsh environments: high temperature and biomedical applications [Ph.D. Thesis]. Atlanta (GA): Georgia Institute of Technology; 2007.Google Scholar

  • [30]

    Wang X, Engel J, Liu C. Liquid crystal polymer for MEMS: processes and applications. J Micromech Microeng 2003;13:628–33.CrossrefGoogle Scholar

  • [31]

    Iron Boar Labs Ltd. Liquid Crystal Polymer (LCP) [https://www.makeitfrom.com/material-properties/liquid-crystal-polymer-lcp]. [cited 2018 Apr 19].

  • [32]

    Kottapalli AGP, Asadnia M, Miao JM, Barbastathis G, Triantafyllou MS. A flexible liquid crystal polymer MEMS pressure sensor array for fish-like underwater sensing. Smart Mater Struct 2012;21:1–13.Web of ScienceGoogle Scholar

  • [33]

    Kottapalli AGP, Tan CW, Olfatnia M, Miao JM, Barbastathis G, Triantafyllou M. A liquid crystal polymer membrane MEMS sensor for flow rate and flow direction sensing applications. J Micromech Microeng 2011;21:1–11.Web of ScienceGoogle Scholar

  • [34]

    Dean Jr. RN, Weller J, Bozack M, et al. Novel biomedical implant interconnects utilizing micromachined LCP. Proc SPIE 2004;5515:88–99.CrossrefGoogle Scholar

  • [35]

    Lee SE, Jun SB, Lee HJ, Kim J, Lee SW, Im C, et al. A flexible depth probe using liquid crystal polymer. IEEE Trans Biomed Eng 2012;59:2085–94.Web of ScienceCrossrefPubMedGoogle Scholar

  • [36]

    Min KS, Lee CJ, Jun SB, Kim J, Lee SE, Shin J, et al. A liquid crystal polymer-based neuromodulation system: an application on animal model of neuropathic pain. Neuromodulation 2014;17:160–9.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [37]

    Wang K, Liu CC, Durand DM. Flexible nerve stimulation electrode with iridium oxide sputtered on liquid crystal polymer. IEEE Trans Biomed Eng 2009;56:6–14.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [38]

    Bhattacharya SK, Tentzeris MM, Yang L, Basat S, Rida A. Flexible LCP and paper-based substrates with embedded actives, passives, and RFIDs. In: Polytronic 2007 – 6th International Conference on Polymer Adhesion Microelectron Photonics. IEEE; 2007:159–66.Google Scholar

  • [39]

    Vyas R, Rida A, Bhattacharya S, Tentzeris MM. Liquid crystal polymer (LCP): The ultimate solution for low-cost RF flexible electronics and antennas. IEEE Antennas Propag Soc AP-S Int Symp 2007:1729–32.Google Scholar

  • [40]

    Zeiser R, Fellner T, Wilde J. Capacitive strain gauges on flexible polymer substrates for wireless, intelligent systems. J Sensors Sens Syst 2014;3:77–86.CrossrefGoogle Scholar

  • [41]

    Zou G, Grönqvist H, Starski JP, Liu J. Characterization of liquid crystal polymer for high frequency system-in-a-package applications. IEEE Trans Adv Packag 2002;25:503–8.CrossrefGoogle Scholar

  • [42]

    Rogers Corporation. ULTRALAM® 3000 flexible copper clad laminate and bondply [https://www.rogerscorp.com/documents/730/acm/ultralam-3000-lcp-laminate-data-sheet-ultralam-3850.aspx]. [cited 2016 Oct 4].

  • [43]

    Boresi AP, Schmidt RJ. Advanced mechanics of materials [http://www.getcited.org/pub/101275081%5cnhttp://ascelibrary.org/doi/10.1061/%28asce%290733-9445%282001%29127%3a5%28598%29]. J Struct Eng 2001;127:598–598.

  • [44]

    Hou SM-C. Design and fabrication of a MEMS-array pressure sensor system for passive underwater navigation inspired by the lateral line [Master’s thesis]. Cambridge (MA): Massachusetts Institute of Technology; 2012.Google Scholar

  • [45]

    Ko HS, Liu CW, Gau C. Novel fabrication of a pressure sensor with polymer material and evaluation of its performance. J Micromech Microeng 2007;17:1640–8.Web of ScienceCrossrefGoogle Scholar

  • [46]

    Xue N, Chang SP, Lee JB. A SU-8-based microfabricated implantable inductively coupled passive RF wireless intraocular pressure sensor. J Microelectromech Syst 2012;21:1338–46.Web of ScienceCrossrefGoogle Scholar

  • [47]

    Senturia SD. Microsystem Design [http://link.springer.com/10.1007/b117574]. Boston, MA: Kluwer Academic Publishers; 2002.

  • [48]

    Sattayasoonthorn P, Suthakorn J, Chamnanvej S, Miao J, Kottapalli AGP. LCP MEMS implantable pressure sensor for Intracranial Pressure measurement. In: 7th IEEE Int Conf Nano/Molecular Med Eng. IEEE; 2013:63–7.Google Scholar

  • [49]

    Rao JS. Fluid statics. In: Simul Based Eng Fluid Flow Des. Cham, Switzerland: Springer International Publishing AG; 2017:23–53.Google Scholar

About the article

Received: 2018-02-26

Accepted: 2018-09-26

Published Online: 2019-03-15

Author Statement

Research funding: FY2016 Thesis Grant for Doctoral Degree Student under National Research Council of Thailand (NRCT) through Mahidol University.

Conflict of interest: Authors state no conflict of interest.

Informed consent: Informed consent is not applicable.

Ethical approval: The conducted research is not related to either human or animals use.

Citation Information: Biomedical Engineering / Biomedizinische Technik, 20180029, ISSN (Online) 1862-278X, ISSN (Print) 0013-5585, DOI: https://doi.org/10.1515/bmt-2018-0029.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in