Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Merhof, Dorit

Biomedical Engineering / Biomedizinische Technik

Joint Journal of the German Society for Biomedical Engineering in VDE and the Austrian and Swiss Societies for Biomedical Engineering and the German Society of Biomaterials

Editor-in-Chief: Dössel, Olaf

Editorial Board: Augat, Peter / Habibović, Pamela / Haueisen, Jens / Jahnen-Dechent, Wilhelm / Jockenhoevel, Stefan / Knaup-Gregori, Petra / Leonhardt, Steffen / Plank, Gernot / Radermacher, Klaus M. / Schkommodau, Erik / Stieglitz, Thomas / Boenick, Ulrich / Jaramaz, Branislav / Kraft, Marc / Lenarz, Thomas / Lenthe, Harry / Lo, Benny / Mainardi, Luca / Micera, Silvestro / Penzel, Thomas / Robitzki, Andrea A. / Schaeffter, Tobias / Snedeker, Jess G. / Sörnmo, Leif / Sugano, Nobuhiko / Werner, Jürgen /


IMPACT FACTOR 2018: 1.007
5-year IMPACT FACTOR: 1.390

CiteScore 2018: 1.24

SCImago Journal Rank (SJR) 2018: 0.282
Source Normalized Impact per Paper (SNIP) 2018: 0.831

Online
ISSN
1862-278X
See all formats and pricing
More options …
Ahead of print

Issues

Volume 57 (2012)

Research on elastic recoil and restoration of vessel pulsatility of Zn-Cu biodegradable coronary stents

Chao Zhou
  • School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xiangyi Feng
  • National United Engineering Laboratory for Biomedical Material Modification, Branden Industrial Park, Qihe Economic and Development Zone, Dezhou City, Shandong 251100, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zhangzhi Shi
  • School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Caixia Song
  • National United Engineering Laboratory for Biomedical Material Modification, Branden Industrial Park, Qihe Economic and Development Zone, Dezhou City, Shandong 251100, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xiaoshan Cui
  • National United Engineering Laboratory for Biomedical Material Modification, Branden Industrial Park, Qihe Economic and Development Zone, Dezhou City, Shandong 251100, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Junwei Zhang
  • National United Engineering Laboratory for Biomedical Material Modification, Branden Industrial Park, Qihe Economic and Development Zone, Dezhou City, Shandong 251100, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ting Li
  • School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Egon Steen Toft
  • Vice President for Medical and Health Sciences, Medical and Health Sciences Office, College of Medicine, Qatar University, Doha, Qatar
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Junbo GE
  • Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Luning Wang
  • Corresponding author
  • School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Haijun Zhang
  • Corresponding author
  • Department of Interventional and Vascular Surgery, The Tenth People’s Hospital of Shanghai, Tongji University, Shanghai 200072, P.R. China
  • Branden Industrial Park, Qihe Economic and Development Zone, Dezhou City, Shandong 251100, P.R. China
  • Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-09-17 | DOI: https://doi.org/10.1515/bmt-2019-0025

Abstract

Coronary stents made of zinc (Zn)-0.8 copper (Cu) (in wt%) alloy were developed as biodegradable metal stents (Zn-Cu stents) in this study. The mechanical properties of the Zn-Cu stents and the possible gain effects were characterized by in vitro and in vivo experiments compared with 316L stainless steel stents (316L stents). Young’s modulus of the as-extruded Zn-0.8Cu alloy and properties of the stents, including their intrinsic elastic recoil, stent trackability were evaluated compared with 316L stents. In vivo study was also conducted to evaluate restoration of pulsatility of vessel segment implanted stents. Both Zn-Cu stents and 316L stents have good acute lumen gain. By comparison, the advantages of Zn-Cu stents are as follows: (I) Zn-Cu stents have less intrinsic elastic recoil than 316L stents; (II) stent trackability indicates that Zn-Cu stents have a smaller push force when passing through curved blood vessels, which may cause less mechanical stimulation to blood vessels; (III) in vivo study suggests that Zn-Cu stents implantation better facilitates the recovery of vascular pulsatility.

Keywords: intrinsic elastic recoil; restoration of pulsatility; Young’s modulus; zinc alloy stents

References

  • [1]

    Iqbal J, Gunn J, Serruys PW. Coronary stents: historical development, current status and future directions. Br Med Bull 2013;106:193–211.Web of SciencePubMedCrossrefGoogle Scholar

  • [2]

    Serruys PW, Chevalier B, Sotomi Y, Cequier A, Carrié D, Piek JJ, et al. Comparison of an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent for the treatment of coronary artery stenosis (ABSORB II): a 3 year, randomised, controlled, single-blind, multicentre clinical trial. Lancet 2016;388:2479–91.Web of ScienceCrossrefGoogle Scholar

  • [3]

    Kereiakes DJ, Ellis SG, Metzger C, Caputo RP, Rizik DG, Teirstein PS, et al. 3-year clinical outcomes with everolimus-eluting bioresorbable coronary scaffolds: the ABSORB III trial. J Am Coll Cardiol 2017;70:2852–62.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [4]

    Gao R, Yang Y, Han Y, Huo Y, Chen J, Yu B, et al. Bioresorbable vascular scaffolds versus metallic stents in patients with coronary artery disease: ABSORB china trial. J Am Coll Cardiol 2015;66:2298–309.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [5]

    Kimura T, Kozuma K, Tanabe K, Nakamura S, Yamane M, Muramatsu T, et al. A randomized trial evaluating everolimus-eluting Absorb bioresorbable scaffolds vs. everolimus-eluting metallic stents in patients with coronary artery disease: Absorb Japan. Eur Heart J 2015;36:3332–42.Web of SciencePubMedCrossrefGoogle Scholar

  • [6]

    Cassese S, Byrne RA, Ndrepepa G, Kufner S, Wiebe J, Repp J, et al. Everolimus-eluting bioresorbable vascular scaffolds versus everolimus-eluting metallic stents: a meta-analysis of randomised controlled trials. Lancet 2015;387:537–44.PubMedWeb of ScienceGoogle Scholar

  • [7]

    Im SH, Jung Y, Kim SH. Current status and future direction of biodegradable metallic and polymeric vascular scaffolds for next-generation stents. Acta Biomater 2017;60:3–22.CrossrefWeb of SciencePubMedGoogle Scholar

  • [8]

    Wang C, Yu Z, Cui Y, Zhang Y, Yu S, Qu G, et al. Processing of a novel Zn alloy micro-tube for biodegradable vascular stent application. J Mater Sci Technol 2016;32:925–9.CrossrefWeb of ScienceGoogle Scholar

  • [9]

    Niu J, Tang Z, Huang H, Pei J, Zhang H, Yuan G, et al. Research on a Zn-Cu alloy as a biodegradable material for potential vascular stents application. Mater Sci Eng C 2016;69:407–13.CrossrefWeb of ScienceGoogle Scholar

  • [10]

    Luza SC, Speisky HC. Liver copper storage and transport during development: implications for cytotoxicity. Am J Clin Nutr 1996;63:812S–20S.CrossrefPubMedGoogle Scholar

  • [11]

    Sen CK, Khanna S, Venojarvi M, Trikha P, Ellison EC, Hunt TK, et al. Copper-induced vascular endothelial growth factor expression and wound healing. Am J Physiol Hear Circ Physiol 2002;282:H1821–7.CrossrefGoogle Scholar

  • [12]

    Jiang Y, Reynolds C, Xiao C, Feng W, Zhou Z, Rodriguez W, et al. Dietary copper supplementation reverses hypertrophic cardiomyopathy induced by chronic pressure overload in mice. J Exp Med 2007;204:657–66.Web of ScienceCrossrefPubMedGoogle Scholar

  • [13]

    Mcauslan BR, Reilly W. Endothelial cell phagokinesis in response to specific metal ions. Exp Cell Res 1980;130: 147–57.CrossrefPubMedGoogle Scholar

  • [14]

    Gao JH, Guan SK, Ren ZW, Sun YF, Zhu SJ, Wang B. Homogeneous corrosion of high pressure torsion treated Mg-Zn-Ca alloy in simulated body fluid. Mater Lett 2011;65:691–3.Web of ScienceCrossrefGoogle Scholar

  • [15]

    Schmidt W, Behrens P, Brandt-Wunderlich C, Siewert S, Grabow N, Schmitz KP. In vitro performance investigation of bioresorbable scaffolds – standard tests for vascular stents and beyond. Cardiovasc Revasc Med 2016;17:375–83.PubMedCrossrefGoogle Scholar

  • [16]

    Zhang H, Wang X, Deng W, Wang S, Ge J, Toft E. Randomized clinical trial comparing abluminal biodegradable polymer sirolimus-eluting stents with durable polymer sirolimus-eluting stents. Medicine 2016;95:e4820.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [17]

    Zhang H, Deng W, Wang X, Wang S, Ge J, Toft E. Solely abluminal drug release from coronary stents could possibly improve reendothelialization. Catheter Cardiovasc Interv 2016;88:E59–66.Web of SciencePubMedCrossrefGoogle Scholar

  • [18]

    Zhang H, Li X, Deng W, Wang X, Wang S, Ge J, et al. Drug release kinetics from a drug-eluting stent with asymmetrical coat. Front Biosci 2017;22:407–15.CrossrefWeb of ScienceGoogle Scholar

  • [19]

    ASTM F2079-09 (2017), Standard Test Method for Measuring Intrinsic Elastic Recoil of Balloon-Expandable Stents, ASTM International, West Conshohocken, PA, USA, 2017.Google Scholar

  • [20]

    ASTM F2394-07 (2017), Standard Guide for Measuring Securement of Balloon Expandable Vascular Stent Mounted on Delivery System, ASTM International, West Conshohocken, PA, USA, 2017.Google Scholar

  • [21]

    American Society for Testing and Materials, 2004a. ASTM-E8-04: standard test methods for tension testing of metallic materials. American society for testing and materials. In: annual book of ASTM standards. Philadelphia, PA: American Society for Testing and Materials.Google Scholar

  • [22]

    Serruys PW, Reiber JHC, Wijns W, van de Brand M, Kooijman CJ, ten Katen HJ, et al. Assessment of percutaneous transluminal coronary angioplasty by quantitative coronary angiography: Diameter versus densitometric area measurements. Am J Cardiol 1984;54:482–8.PubMedCrossrefGoogle Scholar

  • [23]

    Zhang YJ, Bourantas CV, Muramatsu T, Iqbal J, Farooq V, Diletti R, et al. Comparison of acute gain and late lumen loss after PCI with bioresorbable vascular scaffolds versus everolimus-eluting stents: an exploratory observational study prior to a randomised trial. EuroIntervention 2014;10:672–80.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [24]

    Ren Y, Yang K, Zhang B, Wang Y, Liang Y. Nickel-free stainless steel for medical applications. J Mater Sci Technol 2004;20:571–3.Google Scholar

  • [25]

    Bednarczyk W, Kawałko J, Wątroba M, Bała P. Achieving room temperature superplasticity in the Zn-0.5Cu alloy processed via equal channel angular pressing. Mater Sci Eng A 2018;723:126–33.Web of ScienceCrossrefGoogle Scholar

  • [26]

    Mostaed E, Ardakani MS, Sikora-Jasinska M, Drelich JW. Precipitation induced room temperature superplasticity in Zn-Cu alloys. Mater Lett 2019;244:203–6.CrossrefWeb of ScienceGoogle Scholar

  • [27]

    Schmidt W, Lanzer P, Behrens P, Topoleski LDT, Schmitz KP. A comparison of the mechanical performance characteristics of seven drug-eluting stent systems. Catheter Cardiovasc Interv 2009;73:350–60.Web of SciencePubMedCrossrefGoogle Scholar

  • [28]

    Kim TH, Kim JS, Kim BK, Ko YG, Choi D, Jang Y, et al. Long-term (≥2 years) follow-up optical coherence tomographic study after sirolimus- and paclitaxel-eluting stent implantation: comparison to 9-month follow-up results. Int J Cardiovasc Imaging 2011;27:875–81.Web of ScienceCrossrefPubMedGoogle Scholar

  • [29]

    Babapulle MN, Joseph L, Bélisle P, Brophy JM, Eisenberg MJ. A hierarchical bayesian meta-analysis of randomised clinical trials of drug-eluting stents. ACC Curr J Rev 2004;13:55.CrossrefGoogle Scholar

  • [30]

    Yu Q, Zhou J, Fung YC. Neutral axis location in bending and Young’s modulus of different layers of arterial wall. Am J Physiol 1993;265:H52–60.PubMedGoogle Scholar

  • [31]

    Zhao S, Suciu A, Ziegler T, Moore JE Jr, Bürki E, Meister JJ, et al. Synergistic effects of fluid shear stress and cyclic circumferential stretch on vascular endothelial cell morphology and cytoskeleton. Arterioscler Thromb Vasc Biol 1995;15:1781–6.CrossrefPubMedGoogle Scholar

  • [32]

    Chien S. Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am J Physiol Hear Circ Physiol 2007;292:H1209–24.CrossrefGoogle Scholar

  • [33]

    Davies PF. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med 2009;6:16–26.CrossrefPubMedGoogle Scholar

  • [34]

    Gupta V, Grande-Allen KJ. Effects of static and cyclic loading in regulating extracellular matrix synthesis by cardiovascular cells. Cardiovasc Res 2006;72:375–83.PubMedCrossrefGoogle Scholar

  • [35]

    Pasterkamp G, De Kleijn DP, Borst C. Arterial remodeling in atherosclerosis, restenosis and after alteration of blood flow: potential mechanisms and clinical implications. Cardiovasc Res 2000;45:843–52.PubMedCrossrefGoogle Scholar

  • [36]

    Schwartz RS, Murphy JG, Edwards WD, Camrud AR, Vliestra RE, Holmes DR. Restenosis after balloon angioplasty. A practical proliferative model in porcine coronary arteries. Circulation 1990;82:2190–200.CrossrefPubMedGoogle Scholar

  • [37]

    Schwartz RS, Huber KC, Murphy JG, Edwards WD, Camrud AR, Vlietstra RE, et al. Restenosis and the proportional neointimal response to coronary artery injury: results in a porcine model. J Am Coll Cardiol 1992;19:267–74.CrossrefGoogle Scholar

  • [38]

    Karas SP, Gravanis MB, Santoian EC, Robinson KA, Anderberg KA. Coronary intimal proliferation after balloon injury and stenting in swine: an animal model of restenosis. J Am Coll Cardiol 1992;20:467–74.CrossrefPubMedGoogle Scholar

  • [39]

    Lane JP, Perkins LEL, Sheehy AJ, Pacheco EJ, Frie MP, Lambert BJ, et al. Lumen gain and restoration of pulsatility after implantation of a bioresorbable vascular scaffold in porcine coronary arteries. JACC Cardiovasc Interv 2014;7:688–95.Web of SciencePubMedCrossrefGoogle Scholar

  • [40]

    Mintz GS, Popma JJ, Pichard AD, Kent KM, Satler LF, Wong SC, et al. Arterial remodeling after coronary angioplasty a serial intravascular ultrasound study. Circulation 1996;94:35–43.CrossrefPubMedGoogle Scholar

About the article

aChao Zhou and Xiangyi Feng: These authors contributed equally to this study.


Received: 2019-01-28

Accepted: 2019-06-24

Published Online: 2019-09-17


Author Statement

Research funding: This study has financial support from the National Key Research and Development Program of China (No. 2016YFC1102500).

Conflict of interest: Authors declare that there is no conflict of interest regarding the publication of this scientific article.

Informed consent: Informed consent is not applicable.

Ethical approval: This article does not contain any studies with human participants or animals performed by any of the authors.


Citation Information: Biomedical Engineering / Biomedizinische Technik, 20190025, ISSN (Online) 1862-278X, ISSN (Print) 0013-5585, DOI: https://doi.org/10.1515/bmt-2019-0025.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in