Jump to ContentJump to Main Navigation
Show Summary Details
More options …


1 Issue per year

Open Access
See all formats and pricing
More options …

Biosynthesis of ethyl butyrate with immobilized Candida rugosa lipase onto modified Eupergit®C

Daniele Spinelli
  • Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, Siena, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Simone Coppi
  • Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, Siena, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Riccardo Basosi
  • Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, Siena, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rebecca Pogni
  • Corresponding author
  • Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, Siena, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-10-03 | DOI: https://doi.org/10.2478/boca-2014-0001


Lipase from Candida rugosa was immobilized onto the modified Eupergit®C. The support was treated with ethylenediamine and subsequently activated with glutaraldehyde. Enzyme immobilization efficiency was 85%. The optimum pH was close to 6.5 for both the free and immobilized lipase. Immobilized lipase retained its maximum activity in a temperature range of 55 – 60°C. Subsequently, ethyl butyrate synthesis was investigated using immobilized enzyme by esterification of butyric acid with ethanol in solvent-free conditions (23% product yield) and using hexane as a solvent (65% product yield). The acid-alcohol molar ratio and different enzyme amounts were tested as efficient reaction parameters. The biocatalyst maintained 60% of its activity when reused in 8 successive batch reactions in organic solvent. Therefore, the immobilized lipase has demonstrated its potential in practical applications such as short-chain ester synthesis for the food industry.

Graphical Abstract

This article offers supplementary material which is provided at the end of the article.

Keywords : Candida rugosa lipase; immobilization; Eupergit®C; esterification; ethyl butyrate


  • [1] Schwab W., Davidovich-Rikanati R., Lewinsohn E., Biosynthesis of plant-derived flavor compounds, Plant J., 2008, 54, 712-732. CrossrefWeb of ScienceGoogle Scholar

  • [2] Rajendran A., Palanisamy A., Thangavelu V., Lipase catalyzed ester synthesis for food processing industries, Braz. Arch. Biol. Technol., 2009, 52, 207–219. Web of ScienceCrossrefGoogle Scholar

  • [3] Jin Z., Ntwali J., Han S.-Y., Zheng S.-P., Lin Y., Production of flavor esters catalyzed by CALB-displaying Pichia pastoris whole-cells in a batch reactor, J. Biotechnol., 2012, 159, 108–114. Web of ScienceGoogle Scholar

  • [4] Mahapatra P., Kumari A., Garlapati V.K., Banerjee R, Nag A., Enzymatic synthesis of fruit flavor esters by immobilized lipase from Rhizopus oligosporus optimized with response surface methodology, J. Mol. Catal. B: Enzymatic, 2009, 60, 57–63. CrossrefWeb of ScienceGoogle Scholar

  • [5] Shu C., Cai J., Huang L., Zhu X., Xu Z., Biocatalytic production of ethyl butyrate from butyric acid with immobilized Candida rugosa lipase on cotton cloth, J. Mol. Catal. B: Enzymatic, 2011, 72, 139–144. CrossrefGoogle Scholar

  • [6] Pires-Cabral P., da Fonseca M.M.R., Ferreira-Dias S., Esterification activity and operational stability of Candida rugosa lipase immobilized in polyurethane foams in the production of ethyl butyrate, Biochem. Eng. J., 2010, 48, 246–252. CrossrefWeb of ScienceGoogle Scholar

  • [7] Pires-Cabral P., da Fonseca M.M.R., Ferreira-Dias S., Modelling the production of ethyl butyrate catalysed by Candida rugosa lipase immobilised in polyurethane foams, Biochem. Eng. J., 2007, 33, 148–158. CrossrefWeb of ScienceGoogle Scholar

  • [8] Berger R.G., Biotechnology of flavours-the next generation, Biotechnol. Lett., 2009, 31, 1651–1659. CrossrefWeb of ScienceGoogle Scholar

  • [9] Schrader J., Etschmann M.M.W., Sell D., Hilmer J.M., Rabenhorst J., Applied biocatalysis for the synthesis of natural flavour compounds - current industrial processes and future prospects, Biotechnol. Lett., 2004, 26, 463–472. CrossrefGoogle Scholar

  • [10] Serra S., Fuganti C., Brenna E., Biocatalytic preparation of natural flavours and fragrances, Trends Biotechnol., 2005, 23, 193–198. CrossrefGoogle Scholar

  • [11] Kapoor M., Gupta M.N., Lipase promiscuity and its biochemical applications, Process Biochem., 2012, 47, 555-569. CrossrefWeb of ScienceGoogle Scholar

  • [12] Zhang B., Weng Y., Xu H., Mao Z., Enzyme immobilization for biodiesel production, Appl. Microbiol. Biotechnol. 2012, 93, 61–70. CrossrefGoogle Scholar

  • [13] Varma M.N., Madras G., Kinetics of synthesis of butyl butyrate by esterification and transesterification in supercritical carbon dioxide, J. Chem. Technol. Biotechnol., 2008, 83, 1135–1144. CrossrefWeb of ScienceGoogle Scholar

  • [14] Krishna S.H., Divakar S., Prapulla S.G., Karanth N.G., Enzymatic synthesis of isoamyl acetate using immobilized lipase from Rhizomucor miehei, J. Biotechnol., 2001, 87, 193-201. Google Scholar

  • [15] Razafindralambo H., Blecker C., Lognay G., Marlier M., Wathelet P., Severin M., Improvement of enzymatic synthesis conversions of flavour acetates: the example of the isoamyl acetate, Biotechnol. Lett., 1994,16, 247-50. CrossrefGoogle Scholar

  • [16] Song J., Kahveci D., Chen M., Guo Z., Xie E., Xu X., Besenbacher F., Dong M., Enhanced Catalytic Activity of Lipase Encapsulated in PCL Nanofibers, Langmuir, 2012, 28, 6157−6162. CrossrefWeb of ScienceGoogle Scholar

  • [17] Thakar A., Madamwar D., Enhanced ethyl butyrate production by surfactant coated lipase immobilized on silica, Process Biochem., 2005, 40, 3263–3266. CrossrefGoogle Scholar

  • [18] Bayramoglu G., Kaya B., Arica M.Y., Immobilization of Candida rugosa lipase onto spacer-arm attached poly(GMAHEMAEGDMA) microspheres, Food Chemistry, 2005, 92, 261–268. CrossrefGoogle Scholar

  • [19] Kim M.I., Ham H.O., Oh S.-D., Park H.G., Chang H.N., Choi S.-H., Immobilization of Mucor javanicus lipase on effectively functionalized silica nanoparticles, J. Mol. Catal. B: Enzymatic, 2006, 39, 62–68. CrossrefGoogle Scholar

  • [20] Katchalski-Katsir E., Kraemer D., Eupergit C, a carrier for immobilization of enzymes of industrial enzymes, J. Mol. Catal. B: Enzymatic, 2000, 10, 157-176. CrossrefGoogle Scholar

  • [21] Aguila S., Vazquez-Duhalt R., Covarrubias C., Pecchi G. Alderete J.B., Enhancing oxidation activity and stability of iso-1-cytochrome c and chloroperoxidase by immobilization in nanostructured supports, J. Mol. Cat. B: Enzymatic, 2011, 70, 81-87. Google Scholar

  • [22] Yahya A.R.M., Anderson W.A., Moo-Young M.E., Ester synthesis in lipase-catalyzed reactions, Enzyme Microb. Technol., 1998, 23, 438-50. CrossrefGoogle Scholar

  • [23] De B.K., Chatterjee T., Bhattacharyya D.K., Synthesis of geranyl and citronellyl esters of coconut oil fatty acids through alcoholysis by Rhizomucor miehei lipase catalysis, J. Am. Oil. Chem. Soc., 1999, 76, 1501-4. CrossrefGoogle Scholar

  • [24] Chowdary G.V., Ramesh M.N., Prapulla S.G., Enzymatic synthesis of isoamyl isovalerate using immobilized lipase from Rhizomucor miehei: a multivariate analysis, Process Biochem., 2000, 36, 331-9. CrossrefGoogle Scholar

  • [25] Sun S.W., Lin Y.C., Weng Y.M., et al., Efficiency improvements on ninhydrin method for amino acid quantification, J. Food Comp. Anal., 2006, 19, 112-117. CrossrefGoogle Scholar

  • [26] Ruiz, C., Pastor, F. I. J., Diaz, P., Analysis of Bacillus megaterium lipolytic system and cloning of LiA, a novel subfamily I.4 bacterial lipase, FEMS Microbiol. Lett., 2002, 217, 263-267. Google Scholar

  • [27] Bulov L., Mosbach K., The expression in E. coli of a polymeric gene coding for an esterase mimic catalyzing the hydrolysis of p-nitrophenyl esters, FEBS Lett., 1987, 210, 147-152. Google Scholar

  • [28] Prim N., Blanco A., Martinez J., Pastor F.I.J., Diaz P., EstA, a gene coding for a cell-bound esterase from Paenibacillus sp. BP-23, is a new member of the bacterial subclass of type B carboxylesterases, Res. Microbiol., 2000, 151, 303-312. Google Scholar

  • [29] Knezevic Z., Milosavic N., Bezbradica D., Jakovljevic Z., Prodanovic R., Immobilization of lipase from Candida rugosa on Eupergit C supports by covalent attachment, Biochem. Engin. J., 2006, 30, 269-278. Google Scholar

  • [30] Li H., Zhang X., Characterization of thermostable lipase from thermophilic Geobacillus sp. TW1, Protein Expr. Purif., 2005, 42, 153–159. Google Scholar

  • [31] Hirsh S.L., Bilek M.M., Nosworthy N.J., Kondyurin A., dos Remedios C.G., McKenzie D.R., A comparison of covalent immobilization and physical adsorption of a cellulase enzyme mixture, Langmuir, 2010, 26, 14380–14388. Web of ScienceCrossrefGoogle Scholar

  • [32] Garcia A., Oh S., Engler C.R., Cellulase immobilization on Fe3O4 and characterization, Biotechnol. Bioeng., 1989, 33, 321–326. CrossrefGoogle Scholar

  • [33] Lorenzoni A.S.G., Graebin N.G.,Martins A.B., Fernandez- Lafuente R., Ayub M.A.Z. Rodrigues R.C., Optimization of pineapple flavour synthesis by esterification catalysed by immobilized lipase from Rhizomucor miehei, Flavour Fragr. J., 2012, 27, 196–200. Google Scholar

  • [34] Spinelli D., Fatarella E., Di Michele A., Pogni R., Immobilization of fungal (Trametes versicolor) laccase onto Amberlite IR-120 H beads: Optimization and characterization, Process Biochem., 2013, 48, 218–223. Web of ScienceCrossrefGoogle Scholar

  • [35] Fatarella E., Spinelli D., Ruzzante M., Pogni R., Nylon 6 film and nanofiber carriers: Preparation and laccase immobilization performance, J. Mol. Catal. B: Enzymatic, 2014, 102, 41–47. Web of ScienceGoogle Scholar

  • [36] Hills G., Industrial use of lipases to produce fatty acid Esters, Eur. J. Lipid Sci. Technol., 2003, 105, 601–607. CrossrefGoogle Scholar

  • [37] Laane C., Boeren S., Vos K., Veeger C., Rules for optimization of biocatalysis in organic solvents, Biotechnol. Bioeng., 1987, 30, 81-7. CrossrefGoogle Scholar

  • [38] Carta G., Gainer J.L., Gibson M.E., Synthesis of esters using a nylon-immobilized lipase in batch and continuous reactors, Enzyme Microb. Tech., 1992, 14, 904-910. CrossrefGoogle Scholar

  • [39] Martins A.B., da Silva A.M., Scheina M.F., Garcia-Galan C., Ayub M.A.Z., Fernandez-Lafuente R., Rodrigues R.C., Comparison of the performance of commercial immobilized lipases in the synthesis of different flavor esters, J. Mol. Catal. B: Enzymatic, 2014, 105, 18–25. CrossrefWeb of ScienceGoogle Scholar

  • [40] Syamsul K.M.W., Salina M.R., Siti S.O., Hanina M.N., Basyaruddin M.A.R., Jusoff K., Green Synthesis of Lauryl Palmitate via Lipase-Catalyzed Reaction, World App. Sci. J., 2010, 11,401-407. Google Scholar

  • [41] Kumar A. Kanwar S.S., Synthesis of isopropyl ferulate using silica-immobilized lipase in an organic medium, Enzyme Res., 2011, Article ID 718949. CrossrefGoogle Scholar

  • [42] Sharma S. Kanwar S.S., Organic Solvent Tolerant Lipases and Applications, The Scientific World Journal, vol. 2014, Article ID 625258, 15 pages, 2014. doi:10.1155/2014/625258. CrossrefGoogle Scholar

  • [43] Cesarini S., Pastor J., Diaz P., Improvement of P. aeruginosa 42A2 lipase preparations for FAMEs production, both in immobilized and soluble form, J. Mol. Catal. B: Enzymatic, 2014, 99, 1– 7.Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2014-06-22

Accepted: 2014-08-26

Published Online: 2014-10-03

Citation Information: Biocatalysis, Volume 1, Issue 1, Pages 1–12, ISSN (Online) 2353-1746, DOI: https://doi.org/10.2478/boca-2014-0001.

Export Citation

© 2014 Daniele Spinelli, et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Emmanuel Onoja, Sheela Chandren, Fazira Ilyana Abdul Razak, and Roswanira Abdul Wahab
Journal of Biotechnology, 2018
Mahmut Özacar, Atheer Awad Mehde, Wesen Adel Mehdi, and Zeynep Özacar
International Journal of Biological Macromolecules, 2018

Comments (0)

Please log in or register to comment.
Log in