Jump to ContentJump to Main Navigation
Show Summary Details
More options …


1 Issue per year

Open Access
See all formats and pricing
More options …

Biocomputing, Biosensing and Bioactuation Based on Enzyme Biocatalyzed Reactions

Shay Mailloux
  • Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Evgeny Katz
  • Corresponding author
  • Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-10-03 | DOI: https://doi.org/10.2478/boca-2014-0002


The focus of this review paper is on the design and implementation of smart ‘Sense-and-Treat’ systems using enzyme-biocatalytic systems. These systems were used to perform biomolecular computing and they were functionally integrated with signal responsive materials aiming towards their biomedical use. Electrode interfaces, functionalized with signal-responsive materials, find applications in biocomputing, biosensing, and, specifically, triggered release of bioactive substances. ‘Sense-and-Treat’ systems require multiple components working together, including biosensors, actuators, and filters, in order to achieve closed-loop and autonomous operation. In general, biochemical logic networks were developed to process single biochemical or chemical inputs as well as multiple inputs, responding to nonphysiological (for concept demonstration purposes) and physiological signals (for injury detection or diagnosis). Actuation of drug-mimicking release was performed using the responsive material iron-cross-linked alginate with entrapped biomolecular species, responding to physical, chemical or biochemical signals.

Keywords : biocomputing; logic gate; biosensor; modified electrode; signal responsive material; drug release


  • [1] Adamatzky A., De Lacy Costello B., and Asai T., Reaction- Diffusion Computers, 2005, Elsevier, Amsterdam. Google Scholar

  • [2] De Silva A.P., Uchiyama S., Vance T.P., and Wannalerse B., A supramolecular chemistry basis for molecular logic and computation, Coord. Chem. Rev., 2007, 251, 1623-1632. Google Scholar

  • [3] De Silva A.P. and Uchiyama S., Molecular logic and computing, Nat. Nanotechnol., 2007, 2, 399-410. CrossrefGoogle Scholar

  • [4] Szacilowski K., Digital information processing in molecular systems, Chem. Rev., 2008, 108, 3481-3548. CrossrefGoogle Scholar

  • [5] Credi A., Molecules that make decisions, Angew. Chem. Int. Ed., 2007, 46, 5472-5475. CrossrefGoogle Scholar

  • [6] Pischel U., Digital operations with molecules - Advances, challenges, and perspectives, Austral. J. Chem., 2010, 63, 148-164. Google Scholar

  • [7] Andreasson J. and Pischel U., Smart molecules at work-mimicking advanced logic operations, Chem. Soc. Rev., 2010, 39, 174-188. CrossrefGoogle Scholar

  • [8] Baron R., Onopriyenko A., Katz E., Lioubashevski O., Willner I., Wang S., and Tian H., An electrochemical/photochemical information processing system using a monolayer-functionalized electrode, Chem. Commun., 2006, 2147-2149. CrossrefGoogle Scholar

  • [9] Katz E. and Willner I., A quinone-functionalized monolayer electrode in conjunction with hydrophobic magnetic nanoparticles acts as a “Write-Read-Erase” information storage system, Chem. Commun., 2005, 5641–5643. CrossrefGoogle Scholar

  • [10] Halámek J., Tam T.K., Chinnapareddy S., Bocharova V., and Katz E., Keypad lock security system based on immune-affinity recognition integrated with a switchable biofuel cell, J. Phys. Chem. Lett., 2010, 1, 973-977. CrossrefGoogle Scholar

  • [11] Niazov T., Baron R., Katz E., Lioubashevski O., and Willner I., Concatenated logic gates using four coupled biocatalysts operating in series, Proc Natl Acad USA, 2006, 103, 17160–17163. Google Scholar

  • [12] Strack G., Pita M., Ornatska M., and Katz E., Boolean logic gates using enzymes as input signals, ChemBioChem, 2008, 9, 1260-1266. CrossrefGoogle Scholar

  • [13] Baron R., Lioubashevski O., Katz E., Niazov T., and Willner I., Logic gates and elementary computing by enzymes, J. Phys. Chem. A, 2006, 110, 8548-8553. CrossrefGoogle Scholar

  • [14] Sivan S. and Lotan N., A biochemical logic gate using an enzyme and its inhibitor. Part I: The inhibitor as switching element, Biotechnol. Prog., 1999, 15, 964-970. CrossrefGoogle Scholar

  • [15] Sivan S., Tuchman S., and Lotan N., A biochemical logic gate using an enzyme and its inhibitor. Part II: The logic gate, Biosystems, 2003, 70, 21-33. CrossrefGoogle Scholar

  • [16] Deonarine A.S., Clark S.M., and Konermann L., Implementation of a multifunctional logic gate based on folding/unfolding transitions of a protein, Future Gener. Comp. Sy., 2003, 19, 87-97. Google Scholar

  • [17] Ashkenazi G., Ripoll D.R., Lotan N., and Scheraga H.A., A molecular switch for biochemical logic gates: Conformational studies, Biosens. Bioelectron., 1997, 12, 85-95. CrossrefGoogle Scholar

  • [18] Unger R. and Moult J., Towards computing with proteins, Proteins, 2006, 63, 53-64. CrossrefGoogle Scholar

  • [19] Hild W., Pollinger K., Caporale A., Cabrele C., Keller M., Pluym N., Buschauer A., Rachel R., Tessmar J., Breunig M., Goepferich A., G protein-coupled receptors function as logic gates for nanoparticle binding and cell uptake, Proc. Natl. Acad. USA., 2010, 107, 10667-10672. CrossrefGoogle Scholar

  • [20] Stojanovic M.N., Stefanovic D., LaBean T., and Yan H., Computing with nucleic acids, in: Bioelectronics: From Theory to Applications, I. Willner and E. Katz, Eds., 2005, Wiley-VCH, Weinheim. Google Scholar

  • [21] Saghatelian A., Volcker N.H., Guckian K.M., Lin V.S.Y., and Ghadiri M.R., DNA-based photonic logic gates: AND, NAND, and INHIBIT, J. Am. Chem. Soc., 2003, 125, 346-347. CrossrefGoogle Scholar

  • [22] Xu J. and Tan G.J., A review on DNA computing, J. Comput. Theor. Nanoscience, 2007, 4, 1219-1230. CrossrefGoogle Scholar

  • [23] Elbaz J., Lioubashevski O., Wang F., Remacle F., Levine R.D., and Willner I., DNA computing circuits using libraries of DNAzyme subunits, Nature Nanotechnol., 2010, 5, 417-422. Google Scholar

  • [24] Pita M., Zhou J., Manesh K.M., Halámek J., Katz E., and Wang J., Enzyme logic gates for assessing physiological conditions during an injury: Towards digital sensors and actuators, Sens. Actuat. B, 2009, 139, 631-636. Google Scholar

  • [25] Manesh K.M., Halámek J., Pita M., Zhou J., Tam T.K., Santhosh P., Chuang M.-C., Windmiller J.R., Abidin D., Katz E., and Wang J., Enzyme logic gates for the digital analysis of physiological level upon injury, Biosens.Bioelectron., 2009, 24, 3569-3574. CrossrefGoogle Scholar

  • [26] Halámek J., Windmiller J.R., Zhou J., Chuang M.-C., Santhosh P., Strack G., Arugula M.A., Chinnapareddy S., Bocharova V., Wang J., and Katz E., Multiplexing of injury codes for the parallel operation of enzyme logic gates, Analyst, 2010, 135, 2249-2259. CrossrefGoogle Scholar

  • [27] Wang J. and Katz E., Digital biosensors with built-in logic for biomedical applications – Biosensors based on biocomputing concept, Anal. Bioanal. Chem., 2010, 398, 1591-1603. Google Scholar

  • [28] Wang J., In vivo glucose monitoring: Towards ‘sense and act’ feedback-loop individualized medical systems, Talanta, 2008, 75, 636-641. CrossrefGoogle Scholar

  • [29] Gdor E., Katz E., and Mandler D., Biomolecular AND logic gate based on immobilized enzymes with precise spatial separation cotrolled by electrochemical scanning microscopy, J. Phys. Chem. C, 2013, 117, 16058-16065. Google Scholar

  • [30] Bocharova V., Zavalov O., MacVittie K., Arugula M.A., Guz N.V., Dokukin M.E., Halámek J., Sokolov I., Privman V., Katz E., A biochemical logic approach to biomarker-activated drug release, J. Mater. Chem., 2012, 22, 19709-19717. CrossrefGoogle Scholar

  • [31] Rafael S.P., Vallee-Bélisle A., Fabregas E., Plaxco K., Palleschi G., and Ricci F., Employing the metabolic „branch point effect“ to generate an all-or-none, digital-like response in enzymatic outputs and enzyme-based sensors, Anal. Chem., 2012, 84, 1076–1082. CrossrefGoogle Scholar

  • [32] Privman V., Halámek J., Arugula M.A., Melnikov D., Bocharova V., and Katz E., Biochemical filter with sigmoidal response: increasing the complexity of biomolecular logic, J. Phys. Chem. B, 2010, 114, 14103–14109. CrossrefGoogle Scholar

  • [33] Strack G., Chinnapareddy S., Volkov D., Halámek J., Pita M., Sokolov I., and Katz E., Logic networks based on immunorecognition processes, J. Phys. Chem. B, 2009, 113, 12154-12159. CrossrefGoogle Scholar

  • [34] Tam T.K., Strack G., Pita M., and Katz E., Biofuel cell logically controlled by antigen-antibody recognition: towards immune regulated bioelectronic devices, J. Am. Chem. Soc., 2009, 131, 11670-11671. CrossrefGoogle Scholar

  • [35] Clark L.C., Jr and Lyons C., Electrode systems for continuous monitoring in cardiovascular surgery, Ann. N. Y. Acad. Sci., 1962, 102, 29-45. Google Scholar

  • [36] Ronkainen N.J., Halsall H.B., and Heineman W.R., Electrochemical biosensors, Chem. Soc. Rev., 2010, 39, 1747-1763. CrossrefGoogle Scholar

  • [37] Borisov S.M. and Wolfbeis O.S., Optical biosensors, Chem. Rev., 2008, 108, 423-461. CrossrefGoogle Scholar

  • [38] Piezoelectric Sensors, Steinem C. and Janshoff A., Eds., in series: Springer Series on Chemical Sensors and Biosensors, Wolfbeis O.S., Series Ed., 2010, Springer, Berlin, Heidelberg. Google Scholar

  • [39] Wang J., Electrochemical glucose biosensors, Chem. Rev., 2008, 108, 814-825. CrossrefGoogle Scholar

  • [40] Schena M., Microarray Analysis, 2002, Wiley-Liss, Hoboken. Google Scholar

  • [41] Biomolecular Information Processing - From Logic Systems to Smart Sensors and Actuators, Katz E., Ed., 2012, Wiley-VCH, Weinheim, Germany. Google Scholar

  • [42] Katz E. and Privman V., Enzyme-based logic systems for information processing, Chem. Soc. Rev., 2010, 39, 1835-1857. CrossrefGoogle Scholar

  • [43] Stuart M.A.C., Huck W.T.S., Genzer J., Muller M., Ober C., Stamm M., Sukhorukov G.B., Szleifer I., Tsukruk V.V., Urban M., Winnik F., Zauscher S., Luzinov I., and Minko S., Emerging applications of stimuli-responsive polymer materials, Nature Mater., 2010, 9, 101-113. CrossrefGoogle Scholar

  • [44] Katz E., Minko S., Halámek J., MacVittie K., and Yancey K., Electrode interfaces switchable by physical and chemical signals for biosensing, biofuel, and biocomputing applications, Anal. Bioanal. Chem., 2013, 405, 3659-3672. Google Scholar

  • [45] Privman M., Tam T.K., Bocharova V., Halámek J., Wang J., and Katz E., Responsive interface switchable by logically processed physiological signals – Towards “smart” actuators for signal amplification and drug delivery, ACS Appl. Mater. Interfaces, 2011, 3, 1620–1623. CrossrefGoogle Scholar

  • [46] Wang X., Zhou J., Tam T.K., Katz E., and Pita M., Switchable electrode controlled by Boolean logic gates using enzymes as input signals, Bioelectrochemistry, 2009, 77, 69-73. CrossrefGoogle Scholar

  • [47] Katz E. and Pita M., Biofuel cells controlled by logically processed biochemical signals: Towards physiologically regulated bioelectronic devices, Chem. Eur. J., 2009, 15, 12554-12564. CrossrefGoogle Scholar

  • [48] Strack G., Bocharova V., Arugula M.A., Pita M., Halámek J., and Katz E., Artificial muscle reversibly controlled by enzyme reactions, J. Phys. Chem. Lett., 2010, 1, 839-843. CrossrefGoogle Scholar

  • [49] Zhou M., Zhou N., Kuralay F., Windmiller J.R., Parkhomovsky S., Valdés-Ramírez G., Katz E., and Wang J., A self-powered „Sense-Act-Treat“ system that is based on a biofuel cell and controlled by Boolean logic, Angew. Chem. Int. Ed. 2012, 51, 2686-2689. CrossrefGoogle Scholar

  • [50] Katz E., Wang J., Privman M., and Halámek J., Multianalyte digital enzyme biosensors with built-in Boolean logic, Anal. Chem., 2012, 84, 5463-5469. CrossrefGoogle Scholar

  • [51] Traitel T., Goldbart R., and Kost J., Smart polymers for responsive drug-delivery systems, J. Biomater. Sci. Polymer Edn., 2008, 19, 755-767. CrossrefGoogle Scholar

  • [52] Gil B., Kahan-Hanum M., Skirtenko N., Adar R., and Shapiro E., Detection of multiple disease indicators by an autonomous biomolecular computer, Nano Lett., 2011, 11, 2989-2996. CrossrefGoogle Scholar

  • [53] Biomolecular Computing – From Logic Systems to Smart Sensors and Actuators, Katz E., Ed., 2012, Willey-VCH, Weinheim, Germany. Google Scholar

  • [54] Melnikov D., Strack G., Zhou J., Windmiller J.R., Halámek J., Bocharova V., Chuang M.-C., Santhosh P., Privman V., Wang J., and Katz E., Enzymatic AND logic gates operated under conditions characteristic of biomedical applications, J. Phys. Chem. B, 2010, 114, 12166–12174. CrossrefGoogle Scholar

  • [55] Zhou J., Halámek J., Bocharova V., Wang J., and Katz E., Bio-logic analysis of injury biomarker patterns in human serum samples, Talanta, 2011, 83, 955–959. CrossrefGoogle Scholar

  • [56] Halámek J., Zhou J., Halámková L., Bocharova V., Privman V., Wang J., and Katz E., Biomolecular filters for improved separation of output signals in enzyme logic systems applied to biomedical analysis, Anal. Chem., 2011, 83, 8383–8386. CrossrefGoogle Scholar

  • [57] Halámek J., Zavalov O., Halámková L., Korkmaz S., Privman V., and Katz E., Enzyme-based logic analysis of biomarkers at physiological concentrations: and gate with double-sigmoid „filter“ response, J. Phys. Chem. B, 2012, 116, 4457–4464. CrossrefGoogle Scholar

  • [58] Pita M., Privman V., Arugula M.A., Melnikov D., Bocharova V., and Katz E., Towards biochemical filters with a sigmoidal response to pH changes: Buffered biocatalytic signal transduction, Phys. Chem. Chem. Phys., 2011, 13, 4507–4513. CrossrefGoogle Scholar

  • [59] Privman V., Control of noise in chemical and biochemical information processing, Isr. J. Chem., 2011, 51, 118−131. Google Scholar

  • [60] Ezziane Z., DNA computing: Applications and challenges, Nanotechnology, 2006, 17, R27-R39. CrossrefGoogle Scholar

  • [61] Li Z., Rosenbaum M.A., Venkataraman A., Tam T.K., Katz E., and Angenent L.T., Bacteria-based AND logic gate: A decisionmaking and self-powered biosensor, Chem. Commun., 2011, 47, 3060-3062. CrossrefGoogle Scholar

  • [62] Tan K.-K., Bang S.-L., Vijayan A., and Chiu M.-T., Hepatic enzymes have a role in the diagnosis of hepatic injury after blunt abdominal trauma, Injury, 2009, 40, 978-983. CrossrefGoogle Scholar

  • [63] Khalili H., Dayyeh B.A., and Friedman L.S., Assessment of liver function in clinical practice, in: Chronic Liver Failure: Mechanisms and Management (Clinical Gastroenterology), Ginès P., Kamath P.S., and Arroyo V., Eds., 2010, Humana Press, New York. Google Scholar

  • [64] Zen J.M., Kumar A.S., and Tsai D.-M., Recent updates of chemically modified electrodes in analytical chemistry, Electroanalysis, 2003, 15, 1073-1087. CrossrefGoogle Scholar

  • [65] Handbook of Fuel Cells - Fundamentals, Technology, Applications, Vielstich W., Gasteiger H., and Lamm A., Eds., 2003, Wiley, Chichester, England. Google Scholar

  • [66] Rusling J.F. and Forster R.J., Electrochemical catalysis with redox polymer and polyion–protein films, J. Colloid Interface Sci., 2003, 262, 1-15. Google Scholar

  • [67] Willner I. and Katz E., Integration of layered redox proteins and conductive supports for bioelectronic applications, Angew. Chem. Int. Ed., 2000, 39, 1180-1218. CrossrefGoogle Scholar

  • [68] Gooding J.J., Advances in interfacial design for electrochemical biosensors and sensors: Aryl diazonium salts for modifying carbon and metal electrodes, Electroanal., 2008, 20, 573-582. CrossrefGoogle Scholar

  • [69] Moehlenbrock M.J. and Minteer S.D., Extended lifetime biofuel cells, Chem. Soc. Rev., 2008, 37, 1188-1196. CrossrefGoogle Scholar

  • [70] Barton S.C., Gallaway J., and Atanassov P., Enzymatic biofuel cells for implantable and microscale devices, Chem. Rev., 2004, 104, 4867-4886. CrossrefGoogle Scholar

  • [71] Tam T.K., Ornatska M., Pita M., Minko S., and Katz E., Polymer brush-modified electrode with switchable and tunable redox activity for bioelectronic applications, J. Phys. Chem. C, 2008, 112, 8438-8445. CrossrefGoogle Scholar

  • [72] Willner I., Lion-Dagan M., Marx-Tibbon S., and Katz E., Bioelectrocatalyzed amperometric transduction of recorded optical signals using monolayer-modified Au-electrodes, J. Am. Chem. Soc., 1995, 117, 6581-6592. CrossrefGoogle Scholar

  • [73] Jimenez J., Sheparovych R., Pita M., Narvaez Garcia A., Dominguez E., Minko S., and Katz E., Magneto-induced self-assembling of conductive nanowires for biosensor applications, J. Phys. Chem. C, 2008, 112, 7337-7344. CrossrefGoogle Scholar

  • [74] Tam T.K., Pita M., Trotsenko O., Motornov M., Tokarev I., Halámek J., Minko S., and Katz E., Reversible “closing” of an electrode interface functionalized with a polymer brush by an electrochemical signal, Langmuir, 2010, 26, 4506-4513. CrossrefGoogle Scholar

  • [75] Tokarev I., Orlov M., Katz E., and Minko S., An electrochemical gate based on a stimuli-responsive membrane associated with an electrode surface, J. Phys. Chem. B, 2007, 111, 12141-12145. CrossrefGoogle Scholar

  • [76] Willner I. and Katz E., Magnetic control of electrocatalytic and bioelectrocatalytic processes, Angew. Chem. Int. Ed., 2003, 42, 4576-4588. CrossrefGoogle Scholar

  • [77] Katz E., Baron R., and Willner I., Magnetoswitchable electrochemistry gated by alkyl-chain-functionalized magnetic nanoparticles: Control of diffusional and surface-confined electrochemical processes, J. Am. Chem. Soc., 2005, 127, 4060-4070. CrossrefGoogle Scholar

  • [78] Katz E., Sheeney-Haj-Ichia L., Basnar B., Felner I., and Willner I., Magnetoswitchable controlled hydrophilicity/hydrophobicity of electrode surfaces using alkyl-chain-functionalized magnetic particles: Application for switchable electrochemistry, Langmuir, 2004, 20, 9714-9719. CrossrefGoogle Scholar

  • [79] Katz E., Sheeney-Haj-Ichia L., and Willner I., Magnetoswitchable electrocatalytic and bioelectrocatalytic transformations, Chem. Eur. J., 2002, 8, 4138-4148. CrossrefGoogle Scholar

  • [80] Wang J. and Kawde A.N., Magnetic-field stimulated DNA oxidation, Electrochem. Commun., 2002, 4, 349-352. CrossrefGoogle Scholar

  • [81] Wang J., Adaptive nanowires for on-demand control of electrochemical microsystems, Electroanalysis, 2008, 20, 611-615. CrossrefGoogle Scholar

  • [82] Laocharoensuk R., Bulbarello A., Mannino S., and Wang J., Adaptive nanowire–nanotube bioelectronic system for on-demand bioelectrocatalytic transformations, Chem. Commun., 2007, 3362-3364. CrossrefGoogle Scholar

  • [83] Loaiza O.A., Laocharoensuk R., Burdick J., Rodriguez M.C., Pingarron J.M., Pedrero M., and Wang J., Adaptive orientation of multifunctional nanowires for magnetic control of bioelectrocatalytic processes, Angew. Chem. Int. Ed., 2007, 46, 1508-1511. CrossrefGoogle Scholar

  • [84] Wang J., Scampicchio M., Laocharoensuk R., Valentini F., Gonzalez-Garcia O., and Burdick J., Magnetic tuning of the electrochemical reactivity through controlled surface orientation of catalytic nanowires, J. Am. Chem. Soc., 2006, 128, 4562-4563. CrossrefGoogle Scholar

  • [85] Vetter K.J., Electrochemical Kinetics: Theorectical Aspects, 1967, Academic Press, New York. Google Scholar

  • [86] Diamond D. and McKervey M.A., Calixarene-based sensing agents, Chem. Soc. Rev., 1996, 25, 15-24. CrossrefGoogle Scholar

  • [87] Yang D.H., Ju M.-J., Maeda A., Hayashi K., Toko K., Lee S.-W., and Kunitake T., Design of highly efficient receptor sites by combination of cyclodextrin units and molecular cavity in TiO2 ultrathin layer, Biosens. Bioelectron., 2006, 22, 388-392. Google Scholar

  • [88] Gabai R., Sallacan N., Chegel V., Bourenko T., Katz E., and Willner I., Characterization of the swelling of acrylamidophenylboronic acid−acrylamide hydrogels upon interaction with glucose by faradaic impedance spectroscopy, chronopotentiometry, quartz-crystal microbalance (QCM), and surface plasmon resonance (SPR) Experiments, J. Phys. Chem. B, 2001, 105, 8196-8202. CrossrefGoogle Scholar

  • [89] Pita M., Minko S., and Katz E., Enzyme-based logic systems and their applications for novel multi-signal-responsive materials, J. Mater Sci: Materials in Medicine, 2009, 20, 457–462. Google Scholar

  • [90] Minko S., Katz E., Motornov M., Tokarev I., and Pita M., Materials with built-in logic, J. Comput. Theor. Nanosci., 2011, 8, 356–364. CrossrefGoogle Scholar

  • [91] Temtem M., Pompeu D., Jaraquemada G., Cabrita E.J., Casimiro T., and Aguiar-Ricardo A., Development of PMMA membranes functionalized with hydroxypropyl-β-cyclodextrins for controlled drug delivery using a supercritical CO2-assisted technology, Int. J. Pharm., 2009, 376, 110–115. Google Scholar

  • [92] Sukhorukov G.B., Rogach A.L., Zebli B., Liedl T., Skirtach A.G., Köhler K., Antipov A.A., Gaponik N., Susha A.S., Winterhalter M., and Parak W.J., Nanoengineered polymer capsules: tools for detection, controlled delivery, and site-specific manipulation, Small, 2005, 1, 194–200. CrossrefGoogle Scholar

  • [93] Delcea M., Möhwald H., and Skirtach A.G., Stimuli-responsive LbL capsules and nanoshells for drug delivery, Adv. Drug Delivery Rev., 2011, 63, 730–747. CrossrefGoogle Scholar

  • [94] Bagaria H.G. and Wong M.S., Polyamine–salt aggregate assembly of capsules as responsive drug delivery vehicles, J. Mater. Chem., 2011, 21, 9454–9466. CrossrefGoogle Scholar

  • [95] Qin G., Li Z., Xia R., Li F., O‘Neill B.E., Goodwin J.T., Khant H.A., Chiu W., and Li K.C., Partially polymerized liposomes: Stable against leakage yet capable of instantaneous release for remote controlled drug delivery, Nanotechnology, 2011, 22, article #155605. CrossrefGoogle Scholar

  • [96] Adlakha-Hutcheon G., Bally M.B., Shew C.R., and Madden T.D., Controlled destabilization of a liposomal drug delivery system enhances mitoxantrone antitumor activity, Nat. Biotechnol., 1999, 17, 775–779. Google Scholar

  • [97] Donati I. and Paoletti S., in: Alginates: Biology and Applications, Series: Microbiology Monographs, Rehm B.H.A., Ed., 2009, Springer, Dordrecht. Google Scholar

  • [98] Chan A.W., and Neufeld R.J., Tuneable semi-synthetic network alginate for absorptive encapsulation and controlled release of protein therapeutics, Biomaterials, 2010, 31, 9040-9047. CrossrefGoogle Scholar

  • [99] Pescosolido L., Piro T., Vermonden T., Coviello T., Alhaique F., Hennink W.E., and Matricardi P., Biodegradable IPNs based on oxidized alginate and dextran-HEMA for controlled release of proteins, Carbohydr. Polym., 2011, 86, 208-213. CrossrefGoogle Scholar

  • [100] Barrias C.C., Lamghari M., Granja P.L., Miranda M.C.S., and Barbosa M.A., Biological evaluation of calcium alginate microspheres as a vehicle for the localized delivery of a therapeutic enzyme, J. Biomed. Mater. Res., Part A, 2005, 74, 545-552. CrossrefGoogle Scholar

  • [101] Krebs M.D., Salter E., Chen E., Sutter K.A., and Alsberg E., Calcium phosphate-DNA nanoparticle gene delivery from alginate hydrogels induces in vivo osteogenesis, J. Biomed. Mater. Res., Part A, 2010, 92, 1131-1138. Google Scholar

  • [102] Jiang G., Min S.-H., Oh E.J., and Hahn S.K., DNA/PEI/ Alginate polyplex as an efficient in vivo gene delivery system, Biotechnol. Bioprocess Eng. 2007, 12, 684-689. CrossrefGoogle Scholar

  • [103] Dey K. and Roy P., Degradation of chloroform by immobilized cells of Bacillus sp. in calcium alginate beads, Biotechnol. Lett., 2011, 33, 1101-1105. CrossrefGoogle Scholar

  • [104] Hoesli C.A., Raghuram K., Kiang R.L.J., Mocinecová D., Hu X., Johnson J.D., Lacík I., Kieffer T.J., and Piret J.M., Pancreatic cell immobilization in alginate beads produced by emulsion and internal gelation, Biotechnol. Bioeng., 2011, 108, 424-434. CrossrefGoogle Scholar

  • [105] Jin Z., Güven G., Bocharova V., Halámek J., Tokarev I., Minko S., Melman A., Mandler D., and Katz E., Electrochemically controlled drug-mimicking protein release from iron-alginate thin-films associated with an electrode, ACS Appl. Mater. Interfaces, 2012, 4, 466-475. CrossrefGoogle Scholar

  • [106] Draget K.I., Braek G.S., and Smidsrod O., Alginic acid gels: the effect of alginate chemical composition and molecular weight, Carbohydr. Polym. 1994, 25, 31−38. CrossrefGoogle Scholar

  • [107] Morch Y.A., Donati I., Strand B.L., and Skjak-Braek G., Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads, Biomacromolecules, 2006, 7, 1471−1480. Google Scholar

  • [108] Sreeram K.J., Shrivastava H.Y., and Nair B.U., Studies on the nature of interaction of iron(III) with alginates, BBA-Gen. Subjects 2004, 1670, 121−125. Google Scholar

  • [109] Li L.B., Fang Y.P., Vreeker R., and Appelqvist I., Reexamining the egg-box model in calcium-alginate gels with X-ray diffraction, Biomacromolecules, 2007, 8, 464−468. CrossrefGoogle Scholar

  • [110] Narayanan R.P., Melman G., Letourneau N.J., Mendelson N.L., and Melman A., Photoderadable iron(III) cross-linked alginate gels, Biomacromolecules, 2012, 13, 2465-2471. CrossrefGoogle Scholar

  • [111] Vandenbossche G.M.R., Van Oostveldt P.V., Demeester J., and Remon J.-P., The molecular weight cut-off of microcapsules is determined by the reaction between alginate and polylysine, Biotechnol. Bioeng. 1993, 42, 381-386. CrossrefGoogle Scholar

  • [112] Kosourov S.N. and Seibert M., Hydrogen photoproduction by nutrient-deprived Chlamydomonas reinhardtii cells immobilized within thin alginate films under aerobic and anaerobic conditions, Biotechnol. Bioeng. 2009, 102, 50-58. CrossrefGoogle Scholar

  • [113] Tokarev I., Tokareva I., Gopishetty V., and Katz E., Specific biochemical-to-optical signal transduction by responsive thin hydrogel films loaded with noble metal nanoparticles, Adv. Mater., 2010, 22, 1412-1416. CrossrefGoogle Scholar

  • [114] Hiller J. and Rubner M.F., Reversible molecular memory and pH-switchable swelling transitions in polyelectrolyte multilayers, Macromolecules, 2003, 36, 4078-4083. CrossrefGoogle Scholar

  • [115] Nolan C.M., Serpe M.J., and Lyon L.A., Thermally modulated insulin release from microgel thin films, Biomacromolecules, 2004, 5, 1940-1946. CrossrefGoogle Scholar

  • [116] Serpe M.J., Yarmey K.A., Nolan C.M., Lyon L.A., Doxorubicin uptake and release from microgel thin films, Bimacromolecules, 2005, 6, 408-413. CrossrefGoogle Scholar

  • [117] Caldorerea-Moore M.E., Liechty W.B. and Peppas N.A., Responsive theranostic systems: integration of diagnostic imaging agents and responsive controlled release drug delivery carriers, Acc. Chem. Res., 2011, 44, 1061-107. CrossrefGoogle Scholar

  • [118] Vallet-Regí M., Balas F. and Arcos D., Mesoporous materials for drug delivery, Angew. Chem. Int. Ed., 2007, 46,7548–7558. CrossrefGoogle Scholar

  • [119] Gilham I., Theranostics: an emerging tool in drug discovery and commercialization, Drug Discovery World 2002. Google Scholar

  • [120] Wang Y.M., Morinaga H., Sudo A., and Endo T., Synthesis of amphiphilic copolymer having acid-labile bicyclo bisoxazolidine in the side chain for controlled release of fragrance aldehyde, J. Polym. Sci. A, 2011, 49, 1881–1886. CrossrefGoogle Scholar

  • [121] Kirk J.G., Naik S., Moosbrugger J.C., Morrison D.J., Volkov D., and Sokolov I., Self-healing epoxy composites based on the use of nanoporous silica capsules, Int. J. Fracture, 2009, 159, 101–102. Google Scholar

  • [122] Privman V., Dementsov A., and Sokolov I., Modeling of self-healing polymer composites reinforced with nanoporous glass fibers, J. Comput. Theor. Nanosci. 2007, 4, 190–193. Google Scholar

  • [123] Aznar E., Martínez-Máñez R., and Sancenón F. , Controlled release using mesoporous materials containing gate-like scaffoldings, Expert Opin. Drug Deliv., 2009, 6, 643–655. Google Scholar

  • [124] Santos H.A., Salonen J., Bimbo L.M., Lehto V.P, Peltonen L., and Hirvonen J., Mesoporous materials as controlled drug delivery formulations, J. Drug Deliv. Sci. Technol., 2011, 21, 139–155. CrossrefGoogle Scholar

  • [125] He Q. and Shi J., Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility, J. Mater. Chem., 2011, 21, 5845–5855. CrossrefGoogle Scholar

  • [126] Viseras C., Aguzzi C., Cerezo P., and Bedmar M.C., Biopolymerclay nanocomposites for controlled drug delivery, Mater. Sci. Technol., 2008, 24, 1020–1026. CrossrefGoogle Scholar

  • [127] Raemdonck K., Van Thienen T.G., Vandenbroucke R.E., Sanders N.N., Demeester J., and De Smedt S.C., Dextran microgels for time-controlled delivery of siRNA, Adv. Funct. Mater., 2008, 18, 993–1001. CrossrefGoogle Scholar

  • [128] Chertok B., Webber M.J., Succi M.D. and Langer R., Drug delivery interfaces in the 21st century: from science fiction ideas to viable technologies, Mol. Pharm., 2013, 10, 3531-3543. CrossrefGoogle Scholar

  • [129] Kelkar S.S. and Reineke T.M., Theranostics: Combining imaging and therapy, Bioconjugate Chem., 2011, 22, 1879—1903. CrossrefGoogle Scholar

  • [130] Kost J., Leong K., and Langer R., Ultrasound-enhanced polymer degradation and release of incorporated substances, Proc. Natl. Acad. Sci. USA, 1989, 86, 7663-7666. CrossrefGoogle Scholar

  • [131] Aschkenasy C. and Kost J., On-demand release by ultrasound from osmotically swollen hydrophobic matrices, J. Controlled Release, 2005, 110, 58-66. Google Scholar

  • [132] Kost J., Wolfrum J., and Langer R., Magnetically enhanced insulin release in diabetic rats, J. Biomed. Mater. Res., 1987, 21, 1367-1373. CrossrefGoogle Scholar

  • [133] Kwon I., Bae Y., and Kim S., Electrically erodible polymer gel for controlled release of drugs, Nature, 1991, 354, 291-293. Google Scholar

  • [134] Yui N., Okano T., and Sakurai Y., Photo-responsive degradation of heterogeneous hydrogels comprising crosslinked hyaluronic acid and lipid microspheres for temporal drug delivery, J. Control. Rel., 1993, 26, 141-145. Google Scholar

  • [135] Goldbart R. and Kost J., Calcium responsive bioerodible drug delivery system, Pharm. Res., 1999, 16, 1483-1486. CrossrefGoogle Scholar

  • [136] Goldbart R., Traitel T., Lapidot S.A., and Kost J., Enzymatically controlled responsive drug delivery systems, Polym. Advan. Technol., 2002, 13, 1006. CrossrefGoogle Scholar

  • [137] Wang C., Stewart R.J. and Kopecek J., Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains, Nature, 1999, 397, 417-420. Google Scholar

  • [138] Heller J. and Trescony P., Controlled drug release by polymer dissolution. II: Enzyme-mediated delivery device, J. Pharm. Sci., 1979, 68, 919-921. CrossrefGoogle Scholar

  • [139] Yui N., Okano T., and Sakurai Y., Inflammation responsive degradation of crosslinked hyaluronic acid gels, J. Control. Rel., 1992, 22, 105-116. Google Scholar

  • [140] World Health Organization, Adherence to long-term therapies: Evidence for action, 2003. Google Scholar

About the article

Received: 2014-08-21

Accepted: 2014-09-09

Published Online: 2014-10-03

Citation Information: Biocatalysis, Volume 1, Issue 1, Pages 13–32, ISSN (Online) 2353-1746, DOI: https://doi.org/10.2478/boca-2014-0002.

Export Citation

© 2014 Shay Mailloux, Evgeny Katz. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Evgeny Katz and Sergiy Minko
Chem. Commun., 2015, Volume 51, Number 17, Page 3493

Comments (0)

Please log in or register to comment.
Log in