Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biocatalysis

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2353-1746
See all formats and pricing
More options …

Halogenation of β-estradiol by a rationally designed mesoporous biocatalyst based on chloroperoxidase

Karina Salcedo
  • Instituto de Biotecnología, UNAM. Av. Universidad 2001, Chamilpa 62210 Cuernavaca, Mor. México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eduardo Torres-Ramírez
  • Posgrado en Ciencias Ambientales, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla. Edificio 103 G Ciudad Univesitaria 72570. Puebla, Pue. México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Iliana Haces
  • Posgrado en Ciencias Ambientales, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla. Edificio 103 G Ciudad Univesitaria 72570. Puebla, Pue. México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marcela Ayala
  • Instituto de Biotecnología, UNAM. Av. Universidad 2001, Chamilpa 62210 Cuernavaca, Mor. México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-04-29 | DOI: https://doi.org/10.1515/boca-2015-0001

Abstract

Chloroperoxidase from Caldariomyces fumago was immobilized in Eupergit® C, a commercial mesoporous acrylic-based material. Due to low stability of the enzyme under neutral and basic pH, the usual covalent immobilization procedures cannot be applied to this enzyme. Several strategies were followed in order to achieve a stable interaction between the protein and the support. The support was efficiently functionalized with different reactive groups such as aromatic and aliphatic amines, glutaraldehyde, diazonium ions, and maleimide moieties; solvent-exposed amino acid residues in chloroperoxidase were identified or created through chemical modification, so that they were reactive under conditions where the enzyme is stable. Enzyme load and retained activity were monitored, obtaining biocatalysts with specific activity ranging from 200 to 25,000 U/g. The highest load and activity was obtained from the immobilization of a chemically-modified CPO preparation bearing a solvent-exposed free thiol group. This biocatalyst efficiently catalyzed the transformation of β-estradiol, an endocrine disruptor.

Keywords : Immobilization; chloroperoxidase; Eupergit® C; chemical modification; functionalization; stability

References

  • [1] Ruiz-Dueñas F.J., Martinez, A.T., Structural and funcional features of peroxidases with a potential as industrial biocatalysts. In Biocatalysis Based on Heme Peroxidases (Torres E., Ayala M., Eds.), Springer Berlin Heidelberg (2010). Google Scholar

  • [2] Ortiz de Montellano, P.R., Catalytic mechanisms of heme peroxidases. In Biocatalysis Based on Heme Peroxidases (Torres E., Ayala M., Eds.), Springer Berlin Heidelberg (2010). Google Scholar

  • [3] Casella, L., Monzani, E., Nicolis, S., Potential applications of peroxidases in the fine chemicl industries. In Biocatalysis Based on Heme Peroxidases (Torres E., Ayala M., Eds.), Springer Berlin Heidelberg (2010). Google Scholar

  • [4] Torres-Duarte C., Vazquez-Duhalt R., Applications and prospective of peroxidase biocatalysis in the environmental field. In Biocatalysis Based on Heme Peroxidases (Torres E., Ayala M., Eds.), Springer Berlin Heidelberg (2010). Google Scholar

  • [5] Dunford, H.B., Chloroperoxidase from C. fumago. In Peroxidases and catalases: biochemistry, biophysics, biotechnology and physiology, 2nd edition, John Wiley & Sons (2010). Google Scholar

  • [6] Ayala, M., Hernandez-Lopez E.L., Perezgasga, L., Vazquez- Duhalt, R. Reduced coke formation and aromaticity due to chloroperoxidase-catalyzed transformation of asphaltenes from Maya crude oil, Fuel, 2012, 92, 245-249. CrossrefWeb of ScienceGoogle Scholar

  • [7] Hernandez-Lopez, E.L., Ayala, M., Vazquez-Duhalt, R., Microbial and enzymatic biotransformations of asphaltenes, Petrol. Sci. Technol., In press. Google Scholar

  • [8] Longoria, A., Hu, H., Vazquez-Duhalt, R., Enzymatic synthesis of semiconductor polymers by chloroperoxidase from Caldariomyces fumago, Appl. Biochem. Biotechnol., 2010, 162, 927-934 Web of ScienceGoogle Scholar

  • [9] Piantini, U., Schader, J., Wawrzun, A., Wust, M., A biocatalytic route towards rose oxide using chloroperoxidase, Food Chem., 2011, 129, 1025-1029. Web of ScienceGoogle Scholar

  • [10] Gao, F., Wang, L., Liu, Y., Wang, S., Jiang, Y., Hu, M., Li, S., Zhai, Q., Enzymatic synthesis of (R)-modafinil by chloroperoxidasecatalyzed enantioselective sulfoxidation of 2 (diphenyl methylthio) acetamide, Biochem. Eng. J., 2015, 93, 243-249. Web of ScienceGoogle Scholar

  • [11] Águila S., Vazquez-Duhalt R., Covarrubias C., Pecchi G., Alderete J.B., Enhancing oxidation activity and stability of iso-1-cytochrome c and chloroperoxidase by immobilization in nanostructured supports, J. Mol. Catal. B., 2011, 70, 81-87. Web of ScienceGoogle Scholar

  • [12] Aoun S., Chebli C., Baboulene M., Noncovalent immobilization of chloroperoxidase onto talc: catalytic properties of a new biocatalyst, Enz. Microb. Technol., 1998, 23, 380-385. CrossrefGoogle Scholar

  • [13] Han Y., Watson J.T., Stucky G.D., Butler A., Catalytic activity of mesoporous silicate-immobilized chloroperoxidase, J. Mol. Catal. B., 2002, 17, 1-8 CrossrefGoogle Scholar

  • [14] Hartmann M., Streb C., Selective oxidation of indole by chloroperoxidase immobilized on the mesoporous molecular sieve SBA-15, J. Porous Mater., 2006, 13, 347-352. Google Scholar

  • [15] Terrés E., Montiel M., Le Borgne S., Torres E., Immobilization of chloroperoxidase on mesoporous materials for the oxidation of 4,6-dimethyldibenzothiophene, a recalcitrant organic sulfur compound present in petroleum fractions, Biotechnol. Lett., 2008, 30, 173-179. Web of ScienceGoogle Scholar

  • [16] Aburto J., Ayala M., Bustos-Jaimes I., Montiel C., Terres E., Dominguez J.M., Torres E., Stability and catalytic properties of chloroperoxidase immobilized on SBA-16 mesoporous materials, Micro. Meso. Mat., 2005, 83, 193-200. Google Scholar

  • [17] Bakker M., van de Velde F., van Rantwijk F., Sheldon R.A., Highly efficient immobilization of glycosylated enzymes into polyurethane foams, Biotechnol. Bioeng., 2000, 70, 342-348. Google Scholar

  • [18] Bayramoğlu G., Kiralp S., Yilmaz M., Toppare L., Arıca M.Y., Covalent immobilization of chloroperoxidase onto magnetic beads: Catalytic properties and stability, Biochem. Eng. J., 2008, 38, 180-188. Web of ScienceCrossrefGoogle Scholar

  • [19] Borole A., Dai S., Cheng C., Rodriguez M., Jr., Davison B., Performance of chloroperoxidase stabilization in mesoporous sol-gel glass using In situ glucose oxidase peroxide generation, Appl. Biochem. Biotechnol., 2004, 113, 273-285. Google Scholar

  • [20] Bruns N., Tiller J.C., Amphiphilic Network as Nanoreactor for Enzymes in Organic Solvents, Nano Lett., 2004, 5, 45-48. CrossrefGoogle Scholar

  • [21] de Hoog H.M., Nallani M., Cornelissen J.J.L.M., Rowan A.E., Nolte R.J.M., Arends I.W.C.E., Biocatalytic oxidation by chloroperoxidase from Caldariomyces fumago in polymersome nanoreactors, Org. Biomol. Chem., 2009, 7, 4604-4610. CrossrefWeb of ScienceGoogle Scholar

  • [22] Jung D., Paradiso M., Wallacher D., Brandt A., Hartmann M., Formation of cross-linked chloroperoxidase aggregates in the pores of mesocellular foams: characterization by SANS and catalytic properties, ChemSusChem, 2009, 2, 161-164. Web of ScienceCrossrefGoogle Scholar

  • [23] Kadima T.A., Pickard M.A., Immobilization of chloroperoxidase on aminopropyl-glass, Appl. Environ. Microbiol., 1990, 56, 3473-3477. Google Scholar

  • [24] Petri A., Gambicorti T., Salvadori P., Covalent immobilization of chloroperoxidase on silica gel and properties of the immobilized biocatalyst, J. Mol. Catal. B., 2004, 27, 103-106. CrossrefGoogle Scholar

  • [25] Wang W., Xu Y., Wang D.I.C., Li Z., Recyclable nanobiocatalyst for enantioselective sulfoxidation: facile fabrication and high performance of chloroperoxidase-coated magnetic nanoparticles with iron oxide core and polymer shell, J. Am. Chem. Soc., 2009, 131, 12892-12893. Web of ScienceGoogle Scholar

  • [26] Lambeir A.M., Dunford H.B., A kinetic and spectral study of the alkaline transitions of chloroperoxidase, Arch. Biochem. Biophys., 1983, 220, 549-556. Google Scholar

  • [27] Boller, T., Meier, C., Menzler, S., Eupergit oxirane acrylic beads: how to make enzymes fit for biocatalysis, Org. Proc. Res. Dev., 2002, 6, 509-519. CrossrefGoogle Scholar

  • [28] Hollenberg P.F., Hager L.P., Purification of chloroperoxidase from Caldariomyces fumago, Methods Enzymol., 1978, 52, 521-529. Google Scholar

  • [29] Hansen R.E., Østergaard H., Nørgaard P., Winther J.R., Quantification of protein thiols and dithiols in the picomolar range using sodium borohydride and 4,4-dithiodipyridine, Anal. Biochem., 2007, 363, 77-82. Web of ScienceGoogle Scholar

  • [30] Yoder L., Adaptation of the Mohr volumetric method to general determinations of chlorine, J. Ind. Chem. Eng., 1919, 11, 755-755. CrossrefGoogle Scholar

  • [31] Lide D.R., Haynes W.M., CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data, CRC, Boca Raton, Fla, 2009. Google Scholar

  • [32] Waterhouse A.L., Determination of total phenolics. In Current Protocols in Food Analytical Chemistry, John Wiley & Sons, Inc. (2001). Google Scholar

  • [33] Doerge D.R., Divi R.L., Churchwell M.I., Identification of the colored guaiacol oxidation product by peroxidases, Anal. Biochem., 1997, 250, 10-17. Google Scholar

  • [34] Hermanson G.T., Chapter 2 - The Chemistry of Reactive Groups. in Bioconjugate Techniques (Second Edition) (Hermanson G.T., Ed.), Academic Press, New York, (2008). Google Scholar

  • [35] Longoria A., Tinoco R., Torres E., Enzyme technology of peroxidases: immobilization, chemical and genetic modification. in Biocatalysis based on heme peroxidases (Torres E., Ayala M., Eds.), Springer, Germany, (2010). Google Scholar

  • [36] Sokolovsky M., Riordan J.F., Vallee B.L., Tetranitromethane. A reagent for the nitration of tyrosyl residues in proteins, Biochemistry, 1966, 5, 3582-3589. CrossrefGoogle Scholar

  • [37] van Deurzen M.P.J., Groen B.W., van Rantwijk F., Sheldon R.A., A simple purification method for chloroperoxidase and its use in organic media, Biocatal. Biotrans., 1994, 10, 247-255. CrossrefGoogle Scholar

  • [38] Barbosa O., Torres R., Ortiz C., Berenguer-Murcia Á., Rodrigues R.C., Fernandez-Lafuente R., Heterofunctional supports in enzyme immobilization: from traditional immobilization protocols to opportunities in tuning enzyme properties, Biomacromol., 2013, 14, 2433-2462. CrossrefGoogle Scholar

  • [39] Cavalieri E., Rogan E., Chakravarti D., The role of endogenous catechol quinones in the initiation of cancer and neurodegenerative diseases. In Methods in Enzymology (Helmut S., Lester P., Eds.), Academic Press (2004). Google Scholar

  • [40] Hayes C.L., Spink D.C., Spink B.C., Cao J.Q., Walker N.J., Sutter T.R., 17 beta-estradiol hydroxylation catalyzed by human cytochrome P450 1B1, PNAS, 1996, 93, 9776-9781. Google Scholar

  • [41] Takahashi H., Li B., Sasaki T., Miyazaki C., Kajino T., Inagaki S., Catalytic Activity in organic solvents and stability of immobilized enzymes depend on the pore size and surface characteristics of mesoporous silica, Chem. Mater., 2000, 12, 3301-3305. CrossrefGoogle Scholar

  • [42] Lei C., Shin Y., Liu J., Ackerman E.J., Entrapping enzyme in a functionalized nanoporous support, J. Am. Chem. Soc., 2002, 124, 11242-11243. Google Scholar

  • [43] Zhou Z., Hartmann M., Progress in enzyme immobilization in ordered mesoporous materials and related applications, Chem. Soc. Rev., 2013, 42, 3894-3912. CrossrefGoogle Scholar

  • [44] Liehr J.G., Is estradiol a genotoxic mutagenic carcinogen?, Endocrine Rev., 2000, 21, 40-54. Google Scholar

  • [45] Fent K., Weston A.A., Caminada D., Ecotoxicology of human pharmaceuticals, Aquat. Toxicol., 2006, 76, 122-159. Google Scholar

  • [46] Liu X., Zhang F., Liu H., Burdette J.E., Li Y., Overk C.R., Pisha E., Yao J., van Breemen R.B., Swanson S.M., et al., Effect of halogenated substituents on the metabolism and estrogenic effects of the equine estrogen, equilenin, Chem. Res. Toxicol., 2003, 16, 741-749. CrossrefGoogle Scholar

About the article

Received: 2015-02-23

Accepted: 2015-04-05

Published Online: 2015-04-29


Citation Information: Biocatalysis, Volume 1, Issue 1, Pages 33–43, ISSN (Online) 2353-1746, DOI: https://doi.org/10.1515/boca-2015-0001.

Export Citation

© 2015 Karina Salcedo et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Sonia García-Embid, Francesca Di Renzo, Laura De Matteis, Nicoletta Spreti, and Jesús M. de la Fuente
Applied Catalysis A: General, 2018
[2]
José García-Zamora, Karina León-Aguirre, René Quiroz-Morales, Roberto Parra-Saldívar, Mayra Gómez-Patiño, Daniel Arrieta-Baez, Georgette Rebollar-Pérez, and Eduardo Torres
Catalysts, 2018, Volume 8, Number 1, Page 32
[3]
Erika Méndez, Miguel A. González-Fuentes, Georgette Rebollar-Perez, Alia Méndez-Albores, and Eduardo Torres
Journal of Environmental Science and Health, Part A, 2017, Volume 52, Number 3, Page 235
[4]
Magdalena de Jesús Rostro-Alanis, Elena Ivonne Mancera-Andrade, Mayra Beatriz Gómez Patiño, Daniel Arrieta-Baez, Braulio Cardenas, Sergio O. Martinez-Chapa, and Roberto Parra Saldívar
Biocatalysis, 2016, Volume 2, Number 1, Page 1

Comments (0)

Please log in or register to comment.
Log in