Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access April 29, 2015

Halogenation of β-estradiol by a rationally designed mesoporous biocatalyst based on chloroperoxidase

  • Karina Salcedo , Eduardo Torres-Ramírez , Iliana Haces and Marcela Ayala
From the journal Biocatalysis

Abstract

Chloroperoxidase from Caldariomyces fumago was immobilized in Eupergit® C, a commercial mesoporous acrylic-based material. Due to low stability of the enzyme under neutral and basic pH, the usual covalent immobilization procedures cannot be applied to this enzyme. Several strategies were followed in order to achieve a stable interaction between the protein and the support. The support was efficiently functionalized with different reactive groups such as aromatic and aliphatic amines, glutaraldehyde, diazonium ions, and maleimide moieties; solvent-exposed amino acid residues in chloroperoxidase were identified or created through chemical modification, so that they were reactive under conditions where the enzyme is stable. Enzyme load and retained activity were monitored, obtaining biocatalysts with specific activity ranging from 200 to 25,000 U/g. The highest load and activity was obtained from the immobilization of a chemically-modified CPO preparation bearing a solvent-exposed free thiol group. This biocatalyst efficiently catalyzed the transformation of β-estradiol, an endocrine disruptor.

References

[1] Ruiz-Dueñas F.J., Martinez, A.T., Structural and funcional features of peroxidases with a potential as industrial biocatalysts. In Biocatalysis Based on Heme Peroxidases (Torres E., Ayala M., Eds.), Springer Berlin Heidelberg (2010). 10.1007/978-3-642-12627-7_3Search in Google Scholar

[2] Ortiz de Montellano, P.R., Catalytic mechanisms of heme peroxidases. In Biocatalysis Based on Heme Peroxidases (Torres E., Ayala M., Eds.), Springer Berlin Heidelberg (2010). 10.1007/978-3-642-12627-7_5Search in Google Scholar

[3] Casella, L., Monzani, E., Nicolis, S., Potential applications of peroxidases in the fine chemicl industries. In Biocatalysis Based on Heme Peroxidases (Torres E., Ayala M., Eds.), Springer Berlin Heidelberg (2010). 10.1007/978-3-642-12627-7_6Search in Google Scholar

[4] Torres-Duarte C., Vazquez-Duhalt R., Applications and prospective of peroxidase biocatalysis in the environmental field. In Biocatalysis Based on Heme Peroxidases (Torres E., Ayala M., Eds.), Springer Berlin Heidelberg (2010). 10.1007/978-3-642-12627-7_8Search in Google Scholar

[5] Dunford, H.B., Chloroperoxidase from C. fumago. In Peroxidases and catalases: biochemistry, biophysics, biotechnology and physiology, 2nd edition, John Wiley & Sons (2010). Search in Google Scholar

[6] Ayala, M., Hernandez-Lopez E.L., Perezgasga, L., Vazquez- Duhalt, R. Reduced coke formation and aromaticity due to chloroperoxidase-catalyzed transformation of asphaltenes from Maya crude oil, Fuel, 2012, 92, 245-249. 10.1016/j.fuel.2011.06.067Search in Google Scholar

[7] Hernandez-Lopez, E.L., Ayala, M., Vazquez-Duhalt, R., Microbial and enzymatic biotransformations of asphaltenes, Petrol. Sci. Technol., In press. Search in Google Scholar

[8] Longoria, A., Hu, H., Vazquez-Duhalt, R., Enzymatic synthesis of semiconductor polymers by chloroperoxidase from Caldariomyces fumago, Appl. Biochem. Biotechnol., 2010, 162, 927-934 10.1007/s12010-009-8805-7Search in Google Scholar

[9] Piantini, U., Schader, J., Wawrzun, A., Wust, M., A biocatalytic route towards rose oxide using chloroperoxidase, Food Chem., 2011, 129, 1025-1029. 10.1016/j.foodchem.2011.05.068Search in Google Scholar

[10] Gao, F., Wang, L., Liu, Y., Wang, S., Jiang, Y., Hu, M., Li, S., Zhai, Q., Enzymatic synthesis of (R)-modafinil by chloroperoxidasecatalyzed enantioselective sulfoxidation of 2 (diphenyl methylthio) acetamide, Biochem. Eng. J., 2015, 93, 243-249. 10.1016/j.bej.2014.10.017Search in Google Scholar

[11] Águila S., Vazquez-Duhalt R., Covarrubias C., Pecchi G., Alderete J.B., Enhancing oxidation activity and stability of iso-1-cytochrome c and chloroperoxidase by immobilization in nanostructured supports, J. Mol. Catal. B., 2011, 70, 81-87. 10.1016/j.molcatb.2011.02.008Search in Google Scholar

[12] Aoun S., Chebli C., Baboulene M., Noncovalent immobilization of chloroperoxidase onto talc: catalytic properties of a new biocatalyst, Enz. Microb. Technol., 1998, 23, 380-385. 10.1016/S0141-0229(98)00061-1Search in Google Scholar

[13] Han Y., Watson J.T., Stucky G.D., Butler A., Catalytic activity of mesoporous silicate-immobilized chloroperoxidase, J. Mol. Catal. B., 2002, 17, 1-8 10.1016/S1381-1177(01)00072-8Search in Google Scholar

[14] Hartmann M., Streb C., Selective oxidation of indole by chloroperoxidase immobilized on the mesoporous molecular sieve SBA-15, J. Porous Mater., 2006, 13, 347-352. 10.1007/s10934-006-8029-ySearch in Google Scholar

[15] Terrés E., Montiel M., Le Borgne S., Torres E., Immobilization of chloroperoxidase on mesoporous materials for the oxidation of 4,6-dimethyldibenzothiophene, a recalcitrant organic sulfur compound present in petroleum fractions, Biotechnol. Lett., 2008, 30, 173-179. 10.1007/s10529-007-9512-5Search in Google Scholar

[16] Aburto J., Ayala M., Bustos-Jaimes I., Montiel C., Terres E., Dominguez J.M., Torres E., Stability and catalytic properties of chloroperoxidase immobilized on SBA-16 mesoporous materials, Micro. Meso. Mat., 2005, 83, 193-200. 10.1016/j.micromeso.2005.04.008Search in Google Scholar

[17] Bakker M., van de Velde F., van Rantwijk F., Sheldon R.A., Highly efficient immobilization of glycosylated enzymes into polyurethane foams, Biotechnol. Bioeng., 2000, 70, 342-348. 10.1002/1097-0290(20001105)70:3<342::AID-BIT11>3.0.CO;2-ASearch in Google Scholar

[18] Bayramoğlu G., Kiralp S., Yilmaz M., Toppare L., Arıca M.Y., Covalent immobilization of chloroperoxidase onto magnetic beads: Catalytic properties and stability, Biochem. Eng. J., 2008, 38, 180-188. 10.1016/j.bej.2007.06.018Search in Google Scholar

[19] Borole A., Dai S., Cheng C., Rodriguez M., Jr., Davison B., Performance of chloroperoxidase stabilization in mesoporous sol-gel glass using In situ glucose oxidase peroxide generation, Appl. Biochem. Biotechnol., 2004, 113, 273-285. 10.1385/ABAB:113:1-3:273Search in Google Scholar

[20] Bruns N., Tiller J.C., Amphiphilic Network as Nanoreactor for Enzymes in Organic Solvents, Nano Lett., 2004, 5, 45-48. 10.1021/nl048413bSearch in Google Scholar

[21] de Hoog H.M., Nallani M., Cornelissen J.J.L.M., Rowan A.E., Nolte R.J.M., Arends I.W.C.E., Biocatalytic oxidation by chloroperoxidase from Caldariomyces fumago in polymersome nanoreactors, Org. Biomol. Chem., 2009, 7, 4604-4610. 10.1039/b911370cSearch in Google Scholar

[22] Jung D., Paradiso M., Wallacher D., Brandt A., Hartmann M., Formation of cross-linked chloroperoxidase aggregates in the pores of mesocellular foams: characterization by SANS and catalytic properties, ChemSusChem, 2009, 2, 161-164. 10.1002/cssc.200800245Search in Google Scholar

[23] Kadima T.A., Pickard M.A., Immobilization of chloroperoxidase on aminopropyl-glass, Appl. Environ. Microbiol., 1990, 56, 3473-3477. 10.1128/aem.56.11.3473-3477.1990Search in Google Scholar

[24] Petri A., Gambicorti T., Salvadori P., Covalent immobilization of chloroperoxidase on silica gel and properties of the immobilized biocatalyst, J. Mol. Catal. B., 2004, 27, 103-106. 10.1016/j.molcatb.2003.10.001Search in Google Scholar

[25] Wang W., Xu Y., Wang D.I.C., Li Z., Recyclable nanobiocatalyst for enantioselective sulfoxidation: facile fabrication and high performance of chloroperoxidase-coated magnetic nanoparticles with iron oxide core and polymer shell, J. Am. Chem. Soc., 2009, 131, 12892-12893. 10.1021/ja905477jSearch in Google Scholar

[26] Lambeir A.M., Dunford H.B., A kinetic and spectral study of the alkaline transitions of chloroperoxidase, Arch. Biochem. Biophys., 1983, 220, 549-556. 10.1016/0003-9861(83)90446-0Search in Google Scholar

[27] Boller, T., Meier, C., Menzler, S., Eupergit oxirane acrylic beads: how to make enzymes fit for biocatalysis, Org. Proc. Res. Dev., 2002, 6, 509-519. 10.1021/op015506wSearch in Google Scholar

[28] Hollenberg P.F., Hager L.P., Purification of chloroperoxidase from Caldariomyces fumago, Methods Enzymol., 1978, 52, 521-529. 10.1016/S0076-6879(78)52057-0Search in Google Scholar

[29] Hansen R.E., Østergaard H., Nørgaard P., Winther J.R., Quantification of protein thiols and dithiols in the picomolar range using sodium borohydride and 4,4-dithiodipyridine, Anal. Biochem., 2007, 363, 77-82. 10.1016/j.ab.2007.01.002Search in Google Scholar PubMed

[30] Yoder L., Adaptation of the Mohr volumetric method to general determinations of chlorine, J. Ind. Chem. Eng., 1919, 11, 755-755. 10.1021/ie50116a013Search in Google Scholar

[31] Lide D.R., Haynes W.M., CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data, CRC, Boca Raton, Fla, 2009. Search in Google Scholar

[32] Waterhouse A.L., Determination of total phenolics. In Current Protocols in Food Analytical Chemistry, John Wiley & Sons, Inc. (2001). Search in Google Scholar

[33] Doerge D.R., Divi R.L., Churchwell M.I., Identification of the colored guaiacol oxidation product by peroxidases, Anal. Biochem., 1997, 250, 10-17. 10.1006/abio.1997.2191Search in Google Scholar PubMed

[34] Hermanson G.T., Chapter 2 - The Chemistry of Reactive Groups. in Bioconjugate Techniques (Second Edition) (Hermanson G.T., Ed.), Academic Press, New York, (2008). 10.1016/B978-0-12-370501-3.00002-3Search in Google Scholar

[35] Longoria A., Tinoco R., Torres E., Enzyme technology of peroxidases: immobilization, chemical and genetic modification. in Biocatalysis based on heme peroxidases (Torres E., Ayala M., Eds.), Springer, Germany, (2010). Search in Google Scholar

[36] Sokolovsky M., Riordan J.F., Vallee B.L., Tetranitromethane. A reagent for the nitration of tyrosyl residues in proteins, Biochemistry, 1966, 5, 3582-3589. 10.1021/bi00875a029Search in Google Scholar

[37] van Deurzen M.P.J., Groen B.W., van Rantwijk F., Sheldon R.A., A simple purification method for chloroperoxidase and its use in organic media, Biocatal. Biotrans., 1994, 10, 247-255. 10.3109/10242429409065234Search in Google Scholar

[38] Barbosa O., Torres R., Ortiz C., Berenguer-Murcia Á., Rodrigues R.C., Fernandez-Lafuente R., Heterofunctional supports in enzyme immobilization: from traditional immobilization protocols to opportunities in tuning enzyme properties, Biomacromol., 2013, 14, 2433-2462. 10.1021/bm400762hSearch in Google Scholar

[39] Cavalieri E., Rogan E., Chakravarti D., The role of endogenous catechol quinones in the initiation of cancer and neurodegenerative diseases. In Methods in Enzymology (Helmut S., Lester P., Eds.), Academic Press (2004). 10.1016/S0076-6879(04)82017-2Search in Google Scholar

[40] Hayes C.L., Spink D.C., Spink B.C., Cao J.Q., Walker N.J., Sutter T.R., 17 beta-estradiol hydroxylation catalyzed by human cytochrome P450 1B1, PNAS, 1996, 93, 9776-9781. 10.1073/pnas.93.18.9776Search in Google Scholar PubMed PubMed Central

[41] Takahashi H., Li B., Sasaki T., Miyazaki C., Kajino T., Inagaki S., Catalytic Activity in organic solvents and stability of immobilized enzymes depend on the pore size and surface characteristics of mesoporous silica, Chem. Mater., 2000, 12, 3301-3305. 10.1021/cm000487aSearch in Google Scholar

[42] Lei C., Shin Y., Liu J., Ackerman E.J., Entrapping enzyme in a functionalized nanoporous support, J. Am. Chem. Soc., 2002, 124, 11242-11243. 10.1021/ja026855oSearch in Google Scholar PubMed

[43] Zhou Z., Hartmann M., Progress in enzyme immobilization in ordered mesoporous materials and related applications, Chem. Soc. Rev., 2013, 42, 3894-3912. 10.1039/c3cs60059aSearch in Google Scholar PubMed

[44] Liehr J.G., Is estradiol a genotoxic mutagenic carcinogen?, Endocrine Rev., 2000, 21, 40-54. 10.1210/er.21.1.40Search in Google Scholar

[45] Fent K., Weston A.A., Caminada D., Ecotoxicology of human pharmaceuticals, Aquat. Toxicol., 2006, 76, 122-159. 10.1016/j.aquatox.2005.09.009Search in Google Scholar PubMed

[46] Liu X., Zhang F., Liu H., Burdette J.E., Li Y., Overk C.R., Pisha E., Yao J., van Breemen R.B., Swanson S.M., et al., Effect of halogenated substituents on the metabolism and estrogenic effects of the equine estrogen, equilenin, Chem. Res. Toxicol., 2003, 16, 741-749. 10.1021/tx030001fSearch in Google Scholar PubMed

Received: 2015-2-23
Accepted: 2015-4-5
Published Online: 2015-4-29

© 2015 Karina Salcedo et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.1515/boca-2015-0001/html
Scroll to top button