Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biocatalysis

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2353-1746
See all formats and pricing
More options …

Biocatalytic Acetylation of Primary Amines by Lipases under Orbital Shaking and Microwave Radiation

Yara Jaqueline Kerber Araújo
  • Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, Química Ambiental, J. Santa Angelina, São Carlos, 13563-120, SP, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ André Luiz Meleiro Porto
  • Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, Química Ambiental, J. Santa Angelina, São Carlos, 13563-120, SP, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-07-24 | DOI: https://doi.org/10.1515/boca-2015-0003

Abstract

This paper addresses the effects of the concentration of lipases, temperature and solvent on the enzymatic acetylation of primary amines. (±)-Heptan-2-amine 1, (±)-4-phenylbutan-2-amine 2, (±)-1,2,3,4-tetrahydronaphthalen-1-amine 3 and (±)-2-methylcyclohexan-1-amine 4 were acetylated using 11 lipases to obtain amides under orbital shaking and microwave radiation. Under microwave radiation the same amines were acetylated only using the CALB. (±)-Heptan-2-amine 1 was subjected to kinetic resolution, under orbital shaking for 7 h employing CALB and ethyl acetate as acylating agent, and converted into (R)-N- (heptan-2-yl)acetamide 5 (c = 42%, 88% eep, hexane c = 52%, 81% eep, isopropyl ether; c = 40%, 65% eep, toluene). The reaction was fast (15 s) under microwave radiation in hexane and yielded acetamide 4 in high conversion (c = 91%), but without selectivity (5% eep).

This article offers supplementary material which is provided at the end of the article.

Keywords : Lipase; Biocatalysis; Amine; Amide; Microwave radiation; Candida antarctica

References

  • [1] Silverman R.B., Holladay M.W., The Organic Chemistry of Drug Design and Drug Action, Elsevier Academic Press, (2ª Ed.), p.427- 428, 2014. Google Scholar

  • [2] Radu A., Moisǎ M.E., Toșa M.I., Dima N., Zaharia V., Irimie F.D., Candida antarctica lipases acting as versatile catalysts for the synthesis of enantiopure (R)- and (S)-1-(2-phenylthiazol-4-yl) ethanamines, J. Mol. Catal. B-Enzym., 2014, 107, 114-119. Web of ScienceGoogle Scholar

  • [3] Dunn P.J., Hii K.K., Krische M.J., Williams M.T., Sustainable Catalysis: Challenges and Practices for the Pharmaceutical and Fine Chemical Industries, John Wiley & Sons: New Jersey. p. 63-64, 2013. Google Scholar

  • [4] Paetzold J., Bäckvall J. E., Chemoenzymatic dynamic kinetic resolution of primary amines, J. Am. Chem. Soc., 2005, 127, 17620-17621. Google Scholar

  • [5] Ghislieri D., Turner N.J., Biocatalytic approaches to the synthesis of enantiomerically pure chiral amines, Top. Catal., 2014, 57, 284-300. Web of ScienceGoogle Scholar

  • [6] Zaed A.M., Grafton M.W., Ahmad S., Sutherland A., Asymmetric synthesis of cis-aminocyclopentenols, building blocks for medicinal chemistry, J. Org. Chem., 2014, 79, 1511-1515. CrossrefGoogle Scholar

  • [7] Tayler K. M., Snyder S. H., Amphetamine: differentiation by d and I isomers of behavior involving brain norepinephrine or dopamine, Science, 1970, 168, 1487-1489. Google Scholar

  • [8] Hajòs G.T., Garattini S., A note on the effect of (+)- and (−)-amphetamine on lipid metabolism, J. Pharm. Pharmacol., 1973, 25, 418-419. CrossrefGoogle Scholar

  • [9] Murase K., Mase T., Ida H., Takahashi K., Murakami M., Absolute configurations of four isomers of 3-formamido-4- hydroxy-α-[[N-(p-methoxy-α-methylphenethyl) amino] methyl] benzyl alcohol, a potent β-adrenoreceptor stimulant, Chem. Pharm. Bull., 1978, 26, 1123-1129. CrossrefGoogle Scholar

  • [10] Clifton J. E., Collins I., Hallett P., Hartley D., Lunts L. H. C., Wicks P. D.,. Arylethanolamines derived from salicylamide with alpha- and beta-adrenoceptor blocking activities. Preparation of labetalol, its enantiomers and related salicylamides, J. Med. Chem., 1982, 25, 670-679. CrossrefGoogle Scholar

  • [11] Gonzalez-Sabin J., Gotor V., Rebolledo F., Cal-b-catalyzed resolution of some pharmacologically interesting -substituted isopropylamines, Tetrahedron. Asymmetry, 2002, 13, 1315-1320. CrossrefGoogle Scholar

  • [12] Kappe C.O., Controlled microwave heating in modern organic synthesis, Angew. Chem. Int. Ed., 2004, 43, 6250-6284. CrossrefGoogle Scholar

  • [13] Rastogi S., Bhalla V., Arora V., Microwave-assisted efficient synthesis and antifungal evaluation of quinoxaline derivatives, Indian J. Drugs., 2014, 2, 49-55 Google Scholar

  • [14] Polshettiwar V., Varma R.S., Aqueous Microwave Assisted Chemistry: Synthesis and Catalysis, Royal Society of Chemistry: Cambridge, p. 125, 2010. Google Scholar

  • [15] Devendran S., Yadav G.D., Microwave assisted enzymatic kinetic resolution of (±)-1-phenyl-2-propyn-1-ol in nonaqueous media, Biomed Res. Int., 2014, 2014, 1-9. Web of ScienceCrossrefGoogle Scholar

  • [16] Izquierdo D.F., Bernal J.M, Burguete M.I., García- Verdugo E., Lozano P., Luis S.V., An efficient microwave-assisted enzymatic resolution of alcohols using a lipase immobilized on supported ionic liquid-like phases (SILLPs), RSC Adv, 2013, 3, 13123-13126. Google Scholar

  • [17] Shinde S.D., Yadav G.D., Process intensification of immobilized lipase catalysis by microwave irradiation in the synthesis of 4-chloro-2-methylphenoxyacetic acid (MCPA) esters, Biochem. Eng., 2014, 90, 96-102. Web of ScienceGoogle Scholar

  • [18] Rós P.C.M, Castro H.F., Carvalho A.K.F., Soares C.M.F., Moraes F.F., Zanin G.M., Microwave-assisted enzymatic synthesis of beef tallow biodiesel, J. Ind. Microbiol. Biotechnol., 2012, 39, 529-536. CrossrefWeb of ScienceGoogle Scholar

  • [19] Chena Z., LibY, Linc S., Weia M., Dua F., Ruana G., Development of continuous microwave-assisted protein digestion with immobilized enzyme, Biochem. Biophys. Res. Commun., 2014, 445, 491-496. Web of ScienceGoogle Scholar

  • [20] Daniel R.M., Dines M., Petach H. H., The denaturation and degradation of stable enzymes at high temperatures, Biochem. J., 1996, 317, 1-11. Google Scholar

  • [21] Hayes B.L., Microwave Synthesis: Chemistry at the Speed of Light, CEM Publishing: Matthews,NC. p.18, 2002. Google Scholar

  • [22] Rejasse B., Lamare S., Legoy M.-D., Besson T., Stability improvement of immobilized Candida antarctica lipase B in an organic medium under microwave radiation, Org. Biomol. Chem., 2004, 2, 1086-1089. CrossrefGoogle Scholar

  • [23] Yadav G.D., Lathi P.S., Synergism between microwave and enzyme catalysis in intensification of reactions and selectivities: transesterification of methyl acetoacetate with alcohols, J Mol. Catal. A- Chem., 2004, 223, 51-56. Google Scholar

  • [24] Gotor-Fernandez V., Busto E., Gotor V., Candida antarctica lipase B: An ideal biocatalyst for the preparation of nitrogenated organic compounds, 2006, 348, 797-912. Google Scholar

  • [25] Araujo Y.J.K, Porto A.LM., aza-Michael addition of primary Amines by lipases and microwave irradiation: a green protocol for the synthesis of propanenitrile derivatives, Curr. Microw. Chem., 2014, 1, 87-93. Google Scholar

  • [26] Ribeiro S.S., Uliana M.P., Brocksom T.J., Porto A.L.M., Analysis by GC-MS of an aza-Michael reaction catalyzed by CALB on an orbital shaker and under microwave irradiation, Global J. Sci. Frontier Res.: B Chem., 2014, 7-21. Google Scholar

  • [27] Ribeiro S.S., Oliveira J.R., Porto A.L.M., Lipase-catalyzed kinetic resolution of (±)-mandelonitrile under conventional condition and microwave irradiation, J. Braz. Chem. Soc., 2012, 23, 1395-1399. Web of ScienceCrossrefGoogle Scholar

  • [28] Ribeiro S.S., Raminelli C., Porto A.L.M., Enzymatic resolution by CALB of organofluorine compounds under conventional condition and microwave irradiation, J. Fluor. Chem., 2013, 154, 53-59. Web of ScienceGoogle Scholar

  • [29] Armarego W., Perrin D.D., Purification of laboratory chemicals, Butterworth-Heinemann: Oxford, (4ª), 1997. Google Scholar

  • [30] Narayanan C., Sawant, B., Conformation of the carbonyl group in secondary amides, Tetrahedron Lett., 1971, 12, 1321-1324. CrossrefGoogle Scholar

  • [31] Chalard P., Bertrand M., Canet I., Thery V., Remuson R., Jeminet G., Determination of absolute configurations of amines and amino acids using nonchiral derivatizing agents (ncda) and deuterium NMR, Org. Lett., 2000, 2, 2431-2434. CrossrefGoogle Scholar

  • [32] Kim M., Kim W., Han K., Choi Y.,Park J., Dynamic kinetic resolution of primary amines with a recyclable Pd nanocatalyst for racemization, Org. Lett., 2007, 9, 1157-1159. CrossrefWeb of ScienceGoogle Scholar

  • [33] Laurent A., Locher P., Mison P., Désamination nitreuse en milieu aprotique méthyl-2 cyclohexylamines, Bull. Soc. Chim. Fr., 1972, 4, 1369-1374. Google Scholar

  • [34] Zaks A., Klibanov A., The effect of water on enzyme action in organic media, J. Biol. Chem., 1988, 263, 8017-8021. Google Scholar

  • [35] Berendsen W., Gendrot G., Resnick S., Reuss M., Kinetic modeling of lipase catalyzed hydrolysis of (R/S)-1-methoxy- 2-propylacetate as a model reaction for production of chiral secondary alcohols, J. Biotechnol., 2006, 121, 213-226.] Google Scholar

  • [36] Lerin L. A., Loss R. A, Remonatto D., Zenevicz M. C., Balen M., Oenning Netto V., Ninow J. L., Trentin C. M., Oliveira J. V., Oliveira D., A review on lipase-catalyzed reactions in ultrasound-assisted systems, Bioprocess Biosyst Eng., 2014, 37, 2381–2394. Web of ScienceCrossrefGoogle Scholar

  • [37] Kirilin A., Sahin S., Mäki-Arvela P., Wärnå J., Salmi T., Murzin D., Kinetics and modeling of (R,S)-1-phenylethanol acylation over lipase, Int. J. Chem. Kinet., 2010, 42, 629-639. Web of ScienceCrossrefGoogle Scholar

  • [38] Hirata H., Kawanishi M., Iwata Y., Sakaki K., Yanagishita H., Kinetic studies on lipase-catalyzed acetylation of 2-alkanol 309-317. Google Scholar

  • [39] Jung H., Koh J., Kim M., Park J., Practical ruthenium/lipase catalyzed asymmetric transformations of ketones and enol acetates to chiral acetates, Org. Lett., 2000, 2, 2487-2490. CrossrefGoogle Scholar

  • [40] Verzijl G., de Vries J., Broxterman Q., Removal of the acyl donor residue allows the use of simple alkyl esters as acyl donors for the dynamic kinetic resolution of secondary alcohols, Tetrahedron: Asymmetry, 2005,16, 1603-1610. CrossrefGoogle Scholar

  • [41] Nawani N., Singh R., Kaur J., Immobilization and stability studies of a lipase from thermophilic Bacillus sp: the effect of process parameters on immobilization of enzyme, Electron. J. Biotechn., 2006, 9, 0-0. CrossrefGoogle Scholar

  • [42] Yadav G., Borkar I., Kinetic and mechanistic investigation of microwave-assisted lipase catalyzed synthesis of citronellyl acetate, Ind. Eng. Chem. Res., 2008, 48, 7915-7922. Web of ScienceGoogle Scholar

  • [43] Souza R., Matos L., Gonçalves K., Costa I., Babics I., Leite S., Oestreicher E., Antunes O., Michael additions of primary and secondary amines to acrylonitrile catalyzed by lipases, Tetrahedron Lett., 2009, 50, 2017-2018. CrossrefGoogle Scholar

  • [44] Nechab M., Azzi N., Vanthuyne N., Bertrand M., Gastaldi S., Gil G., Highly selective enzymatic kinetic resolution of primary amines at 80 c: a comparative study of carboxylic acids and their ethyl esters as acyl donors, J. Org. Chem., 2007,72, 6918–6923. Web of ScienceGoogle Scholar

  • [45] Tsuchihashi G., Iriuchijima S., Maniwa K., Asymmetric synthesis using α-sulfinylcarbanions. II. Synthesis of optically active amines, Tetrahedron Lett., 1973, 14, 3389–3392. CrossrefGoogle Scholar

  • [46] Masutani K., Minowa T., Hagiwara Y., Mukaiyama T., Cyanation of alcohols with diethyl cyanophosphonate and 2,6-dimethyl- 1,4-benzoquinone by a new type of oxidation–reduction condensation, Bull. Chem. Soc. Jpn., 2009, 79, 1106-1117. Google Scholar

  • [47] Enders D., Harnying W., A highly efficient asymmetric synthesis of homotaurine derivatives via diastereoselective ring-opening of γ-sultones, Synthesis, 2004, 17, 2910-2918. Google Scholar

  • [48] Garcia-Urdiales E., Rebolledo F., Gotor V., Enzymatic one-pot resolution of two nucleophiles: alcohol and amine, Tetrahedron. Asymmetry, 2000, 11, 1459-1463. CrossrefGoogle Scholar

  • [49] Skupinska K., McEachern E., Baird I., Skerlj R., Bridger G., Enzymatic resolution of bicyclic 1-heteroarylamines using Candida antarctica lipase B, J. Org. Chem., 2003, 68, 3546-3551. Google Scholar

About the article

Received: 2015-02-24

Accepted: 2015-06-12

Published Online: 2015-07-24


Citation Information: Biocatalysis, Volume 1, Issue 1, Pages 49–58, ISSN (Online) 2353-1746, DOI: https://doi.org/10.1515/boca-2015-0003.

Export Citation

© 2015 Yara Jaqueline Kerber Araújo, André Luiz Meleiro Porto. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in