Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biocatalysis

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2353-1746
See all formats and pricing
More options …

Biocatalytic deracemization: An efficient one-pot synthesis of (R)-α-methyl-4-pyridinemethanol using whole cells of Candida parapsilosis

Saptarshi Ghosh
  • Department of Pharmaceutical Technology, National Institute of Pharmaceutical Education and Research, Sector-67, S. A. S. Nagar-160062, Punjab, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Linga Banoth
  • Department of Pharmaceutical Technology, National Institute of Pharmaceutical Education and Research, Sector-67, S. A. S. Nagar-160062, Punjab, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Uttam Chand Banerjee
  • Department of Pharmaceutical Technology, National Institute of Pharmaceutical Education and Research, Sector-67, S. A. S. Nagar-160062, Punjab, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-09-10 | DOI: https://doi.org/10.1515/boca-2015-0004

Abstract

A single-step synthesis of (R)-α-methyl- 4-pyridinemethanol from (RS)-α-methyl-4- pyridinemethanol by stereoinversion using whole cells of Candida parapsilosis is reported. Among the various strains of Candida species examined, C. parapsilosis demonstrated to have the best oxidoreductase system for stereoinversion of (RS)-α-methyl-4-pyridinemethanol. The effect of various physicochemical parameters on the stereoinversion process, were studied. Under optimized conditions approximately 97% enantiomeric excess of (R)-α-methyl-4-pyridinemethanol (eeR) was obtained with 99% yield was obtained. The optimized parameters were determined to be a substrate concentration of 5 mM, pH 8.0, 30°C incubation temperature, and a reaction time of 48 h. The reactions were also carried out in different organic solvents, and maximum stereoinversion was obtained in 1,4-dioxane with 78.4% eeR and 74.7% yield, which are lower than those in phosphate buffer. This whole cell catalysis for the preparation of (R)-α-methyl-4- pyridinemethanol is an example of a green, enantiopure synthesis of secondary alcohols.

Graphical Abstract

This article offers supplementary material which is provided at the end of the article.

Keywords : biocatalysis; α-methyl-4-pyridinemethanol; stereoinversion; enantiomeric excess

References

  • [1] Uskokovic M.R., Lewis R.L., Partridge J.J., Despreaux C.W., Pruess D.L., Asymmetric synthesis of allo-heteroyohimbine alkaloids, J. Am. Chem. Soc., 1979, 101, 6742-6744. CrossrefGoogle Scholar

  • [2] Kaneoya M., Uchida M., Yoshida N., U.S. Patent No. 4,971,909, 1990. Google Scholar

  • [3] Quallich G.J., Woodall T.M., Diphenyloxazaborolidine a new catalyst for enantio-selective reduction of ketones, Tetrahedron Lett., 1993, 34, 4145-4148. CrossrefGoogle Scholar

  • [4] Collomb P., Von Zelewsky A., Synthesis of new chiral catalysts, pyridyl-and bipyridyl-alcohols, for the enantioselective addition of diethylzinc to benzaldehyde, Tetrahedron: Asymmetry, 1998, 9, 3911-3917. CrossrefGoogle Scholar

  • [5] Okano K., Murata K., Ikariya T., Stereoselective synthesis of optically active pyridyl alcohols via asymmetric transfer hydrogenation of pyridyl ketones, Tetrahedron Lett., 2000, 41, 9277-9280. CrossrefGoogle Scholar

  • [6] Brown E., Penfornis A., Bayma J., Touet J., Asymmetric reductions of ketones using lithium aluminium hydride modified with N, N-dialkyl derivatives of (R)-(−)-2- aminobutan-1-ol, Tetrahedron: Asymmetry, 1991, 2, 339-342. CrossrefGoogle Scholar

  • [7] Lee J.H., Kim N., Kim M.J., Park J., Substituent effect on catalytic activities of [{η5- Ar4C4COC(=O)Ar}Ru(CO)2Cl] in racemization and DKR of secondary alcohols, ChemCatChem, 2011, 3, 354-359. Google Scholar

  • [8] Seemayer R., Schneider M.P., Preparation of optically pure pyridyl-1-ethanols, Tetrahedron: Asymmetry, 1992, 3, 827-830. CrossrefGoogle Scholar

  • [9] Uenishi J.I., Hiraoka T., Hata S., Nishiwaki K., Yonemitsu O., Nakamura K., Tsukube H., Chiral pyridines: optical resolution of 1-(2-pyridyl)-and 1-[6-(2, 2’-bipyridyl)] ethanols by lipasecatalyzed enantioselective acetylation, J. Org. Chem., 1998, 63, 2481-2487. CrossrefGoogle Scholar

  • [10] Hatzakis N.S., Smonou I., Asymmetric transesterification of secondary alcohols catalyzed by feruloyl esterase from Humicola insolens, Bioorg. Chem., 2005, 33, 325-337. CrossrefGoogle Scholar

  • [11] Laumen K., Schneider M.P., A highly selective ester hydrolase from Pseudomonas sp. for the enzymatic preparation of enantiomerically pure secondary alcohols; chiral auxiliaries in organic synthesis, Chem Commun., 1988, 9, 598-600. CrossrefGoogle Scholar

  • [12] Gruber C.C., Lavandera I., Faber K., Kroutil W., From a racemate to a single enantiomer: deracemization by stereoinversion, Adv. Synth. Catal., 2006, 348, 1789-1805. Google Scholar

  • [13] Voss C.V., Gruber C.C., Kroutil W., Deracemization of secondary alcohols through a concurrent tandem biocatalytic oxidation and reduction, Angew. Chem., Int. Ed., 2008, 47, 741-745. CrossrefWeb of ScienceGoogle Scholar

  • [14] Nie Y., Xu Y., Mu X.Q., Highly enantioselective conversion of racemic 1-phenyl-1, 2-ethanediol by stereoinversion involving a novel cofactor-dependent oxidoreduction system of Candida parapsilosis CCTCC M203011, Org. Process Res. Dev., 2004, 8, 246-251. CrossrefGoogle Scholar

  • [15] Nakamura K., Fujii M., Ida Y., Stereoinversion of arylethanols by Geotrichum candidum, Tetrahedron: Asymmetry, 2001, 12, 3147-3153. CrossrefGoogle Scholar

  • [16] Xie S.X., Ogawa J., Shimizu S., Production of (R)-3-pentyn-2-ol through stereoinversion of racemic 3-pentyn-2-ol by Nocardia fusca AKU 2123. Appl. Microbiol. Biotechnol. 1999, 52, 327-331. CrossrefGoogle Scholar

  • [17] Gamenara D., Domínguez de María P., Candida spp. redox machineries: An ample biocatalytic platform for practical applications and academic insights. Biotechnol. Adv., 2009, 27, 278-285. Web of ScienceCrossrefGoogle Scholar

  • [18] Nestl B.M., Voss C.V., Bodlenner A., Ellmer-Schaumberger U., Kroutil W., Faber K., Biocatalytic racemization of sec-alcohols and α-hydroxyketones using lyophilized microbial cells, Appl. Microbiol. Biotechnol., 2007, 76, 1001-1008. Web of ScienceCrossrefGoogle Scholar

  • [19] Baskar B., Pandian N.G., Priya K., Chadha A., Deracemisation of aryl substituted α-hydroxy esters using Candida parapsilosis ATCC 7330: effect of substrate structure and mechanism, Tetrahedron, 2005, 61, 12296-12306. Google Scholar

  • [20] Banoth L., Banerjee U.C., New Chemical and Chemo-enzymatic synthesis of (RS)-, (R)-, and (S)-Esmolol, Arabian J. Chem., (in press), DOI:10.1016/j.arabjc.2014.03.011. CrossrefGoogle Scholar

  • [21] Padhi S.K., Chadha A., Deracemisation of aromatic β-hydroxy esters using immobilized whole cells of Candida parapsilosis ATCC 7330 and determination of absolute configuration by 1H NMR, Tetrahedron: Asymmetry, 2005, 16, 2790-2798. Google Scholar

  • [22] Titu D., Chadha A., Enantiomerically pure allylic alcohols: preparation by Candida parapsilosis ATCC 7330 mediated deracemisation, Tetrahedron: Asymmetry, 2008, 19, 1698-1701. CrossrefWeb of ScienceGoogle Scholar

  • [23] Saravanan T., Chadha A., Biocatalytic deracemization of alkyl-2-hydroxy-4-arylbut-3-ynoates using whole cells of Candida parapsilosis ATCC 7330, Tetrahedron: Asymmetry, 2010, 21, 2973-2980. CrossrefWeb of ScienceGoogle Scholar

  • [24] Guezane S.L., Djerourou A., Esterification and etherification of steroid and terpene under Mitsunobu conditions, Arabian J. Chem., (in press), DOI: 10.1016/j.arabjc.2011.09.008. CrossrefGoogle Scholar

  • [25] Salihu A., Alam M.Z., Karim M.I.A., Salleh H.M., Esterification for butyl butyrate formation using Candida cylindracea lipase produced from palm oil mill effluent supplemented medium, Arabian J. Chem., (in press), DOI: 10.1016/j.arabjc.2013.08.012. CrossrefWeb of ScienceGoogle Scholar

  • [26] Orrenius C., Mattson A., Norin T., Ohrner N., Hult K., Preparation of 1-pyridinyl-ethanols of high enantiomeric purity by lipase catalysed transesterifications, Tetrahedron: Asymmetry, 1994, 5, 1363-1366. CrossrefGoogle Scholar

  • [27] Soni P., Kaur G., Chakraborti A., Banerjee U.C., Candida viswanathii as a novel biocatalyst for stereoselective reduction of heteroaryl methyl ketones: A highly efficient enantioselective synthesis of (S)-α-(3-pyridyl)ethanol. Tetrahedron: Asymmetry, 2005, 16, 2425-2428. CrossrefGoogle Scholar

  • [28] Päiviö M., Mavrynsky D., Leino R., Kanerva, L.T., Dynamic kinetic resolution of a wide range of secondary alcohols: Cooperation of dicarbonylchlorido(pentabenzylcyclopentadienyl) ruthenium and CAL-B, Eur. J. Org. Chem., 2011, 1452-1457. CrossrefWeb of ScienceGoogle Scholar

  • [29] Machado L.L., Gonzalo G.D., Lemos T.L.G., Mattosa M.C.D., Oliveira, M.C.F., Fernández V.G., Gotor V., Enantioselective acetylation of racemic alcohols by Manihot esculenta and Passiflora edulis preparations, J. Mol. Catal. B: Enzymatic, 2009, 60, 157-162. Web of ScienceCrossrefGoogle Scholar

  • [30] Singh A., Chisti Y., Banerjee U.C., Stereoselective biocatalytic hydride transfer to substituted acetophenones by the yeast Metschnikowia koreensis, Process Biochem., 2012, 47, 2398-2404. CrossrefWeb of ScienceGoogle Scholar

  • [31] Kansal H., Banerjee U.C., Enhancing the biocatalytic potential of carbonyl reductase of Candida viswanathii using aqueousorganic solvent system. Bioresour. Technol., 2009, 100, 1041-1047. Web of ScienceCrossrefGoogle Scholar

  • [32] Stella S., Chadha A., Biocatalytic reduction of α-keto amides to (R)-α-hydroxy amides using Candida parapsilosis ATCC 7330, Catal. Today, 2012, 198, 345-352. Web of ScienceGoogle Scholar

  • [33] Zhu D., Malik H.T., Hua L., Asymmetric ketone reduction by a hyperthermophilic alcohol dehydrogenase. The substrate specificity, enantioselectivity and tolerance of organic solvents, Tetrahedron: Asymmetry, 2006, 17, 3010-3014. CrossrefGoogle Scholar

  • [34] Laane C., Boeren S., Vos K., Veeger C. Rules for optimization of biocatalysis in organic solvents, Biotechnol. Bioeng., 1987, 30, 81-87. CrossrefGoogle Scholar

  • [35] Nakamura K., Inoue Y., Ohno A., Improvement of enantioselectivity of microbial reduction by using organic solvent redox coupler system, Tetrahedron Lett., 1995, 36, 265-266 CrossrefGoogle Scholar

About the article

Received: 2015-05-15

Accepted: 2015-07-20

Published Online: 2015-09-10


Citation Information: Biocatalysis, Volume 1, Issue 1, Pages 59–66, ISSN (Online) 2353-1746, DOI: https://doi.org/10.1515/boca-2015-0004.

Export Citation

© 2015 Saptarshi Ghosh et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in