Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biocatalysis

1 Issue per year

Open Access
Online
ISSN
2353-1746
See all formats and pricing
More options …

Short Peptides in Minimalistic Biocatalyst Design

Krystyna L. Duncan
  • WestCHEM/Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rein V. Ulijn
  • WestCHEM/Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, UK
  • Advanced Science Research Center (ASRC) and Hunter College, City University of New York, 85 St Nicholas Terrace, New York, NY10031, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-09-01 | DOI: https://doi.org/10.1515/boca-2015-0005

Abstract

We review recent developments in the use of short peptides in the design of minimalistic biocatalysts focusing on ester hydrolysis. A number of designed peptide nanostructures are shown to have (modest) catalytic activity. Five features are discussed and illustrated by literature examples, including primary peptide sequence, nanosurfaces/scaffolds, binding pockets, multivalency and the presence of metal ions. Some of these are derived from natural enzymes, but others, such as multivalency of active sites on designed nanofibers, may give rise to new features not found in natural enzymes. Remarkably, it is shown that each of these design features give rise to similar rate enhancements in ester hydrolysis. Overall, there has been significant progress in the development of fundamental understanding of the factors that influence binding and activity in recent years, holding promise for increasingly rational design of peptide based biocatalysts.

Keywords : primary sequence; histidine; nano-surface/ scaffold; multivalency; metals; rational design; catalysis; ester hydrolysis

References

  • [1] Palmer T., Understanding enzymes, Prentice Hall/Ellis Horwood, London ; New York, 1995. Google Scholar

  • [2] Stryer L., Biochemistry, W.H. Freeman Company, New York, 1995. Google Scholar

  • [3] Greenwald J., Riek R., On the Possible Amyloid Origin of Protein Folds, J. Mol. Biol., 2012, 421, 417-426. Google Scholar

  • [4] Carny O., Gazit E., A model for the role of short self-assembled peptides in the very early stages of the origin of life, FASEB J., 2005, 19, 1051-1055. CrossrefGoogle Scholar

  • [5] Neurath H., Walsh K.A., Role of Proteolytic-Enzymes in Biological Regulation, Proc. Natl. Acad. Sci. U.S.A., 1976, 73, 3825-3832. Google Scholar

  • [6] Neurath H., Evolution of Proteolytic-Enzymes, Science., 1984, 224, 350-357. Google Scholar

  • [7] Carter P., Wells J.A., Dissecting the Catalytic Triad of a Serine Protease, Nature., 1988, 332, 564-568. Google Scholar

  • [8] Li Y.S., Zhao Y.F., Hatfield S., Wan R., Zhu Q., Li X.H., McMills M., Ma Y., Li J., Brown K.L., et al., Dipeptide seryl-histidine and related oligopeptides cleave DNA, protein, and a carboxyl ester, Bioorg. Med. Chem., 2000, 8, 2675-2680. CrossrefGoogle Scholar

  • [9] Wolfenden R., Snider M.J., The depth of chemical time and the power of enzymes as catalysts, Acc. Chem. Res., 2001, 34, 938-945. CrossrefGoogle Scholar

  • [10] Miller B.G., Wolfenden R., Catalytic proficiency: The unusual case of OMP decarboxylase, Annu. Rev. Biochem., 2002, 71, 847-885. Google Scholar

  • [11] Steitz T.A., Shulman R.G., Crystallographic and Nmr-Studies of the Serine Proteases, Annu. Rev. Biophys. Bio., 1982, 11, 419-444. CrossrefGoogle Scholar

  • [12] Polgar L., The catalytic triad of serine peptidases, Call. Mol. Life. Sci., 2005, 62, 2161-2172. Google Scholar

  • [13] Rao M.B., Tanksale A.M., Ghatge M.S., Deshpande V.V., Molecular and biotechnological aspects of microbial proteases, Microbiol. Mol. Biol. Rev., 1998, 62, 597-635. Google Scholar

  • [14] J. M. Berg J.L.T., L. Stryer, Biochemistry. 5th Edition., W H Freeman, New York, 2002. Google Scholar

  • [15] Reetz M.T., Torre C., Eipper A., Lohmer R., Hermes M., Brunner B., Maichele A., Bocola M., Arand M., Cronin A., et al., Enhancing the enantioselectivity of an epoxide hydrolase by directed evolution, Org. Lett., 2004, 6, 177-180. CrossrefGoogle Scholar

  • [16] You L., Arnold F.H., Directed evolution of subtilisin E in Bacillus subtilis to enhance total activity in aqueous dimethylformamide, Protein Eng., 1996, 9, 77-83. CrossrefGoogle Scholar

  • [17] Arnold F.H., Design by directed evolution, Acc. Chem. Res., 1998, 31, 125-131. CrossrefGoogle Scholar

  • [18] Vriezema D.M., Aragones M.C., Elemans J.A.A.W., Cornelissen J.J.L.M., Rowan A.E., Nolte R.J.M., Self-assembled nanoreactors, Chem. Rev., 2005, 105, 1445-1489. Google Scholar

  • [19] Pasquato L., Pengo P., Scrimin P., Functional gold nanoparticles for recognition and catalysis, J. Mater. Chem., 2004, 14, 3481-3487. CrossrefGoogle Scholar

  • [20] Gorlero M., Wieczorek R., Adamala K., Giorgi A., Schinina M.E., Stano P., Luisi P.L., Ser-His catalyses the formation of peptides and PNAs, FEBS Lett., 2009, 583, 153-156. Web of ScienceGoogle Scholar

  • [21] Zhang S., Holmes T., Lockshin C., Rich A., Spontaneous assembly of a self-complementary oligopeptide to form a sTable macroscopic membrane, Proc. Natl. Acad. Sci. U.S.A., 1993, 90, 3334-3338. CrossrefGoogle Scholar

  • [22] Reches M., Gazit E., Casting metal nanowires within discrete self-assembled peptide nanotubes, Science., 2003, 300, 625-627. Google Scholar

  • [23] Hartgerink J.D., Beniash E., Stupp S.I., Self-assembly and mineralization of peptide-amphiphile nanofibers, Science., 2001, 294, 1684-1688. Google Scholar

  • [24] Guler M.O., Soukasene S., Hulvat J.F., Stupp S.I., Presentation and recognition of biotin on nanofibers formed by branched peptide amphiphiles, Nano Lett., 2005, 5, 249-252. CrossrefGoogle Scholar

  • [25] Jayawarna V., Ali M., Jowitt T.A., Miller A.E., Saiani A., Gough J.E., Ulijn R.V., Nanostructured hydrogels for three-dimensional cell culture through self-assembly of fluorenylmethoxycarbonyl- dipeptides, Adv. Mater., 2006, 18, 611-614. CrossrefGoogle Scholar

  • [26] Yang Z., Xu B., Supramolecular hydrogels based on biofunctional nanofibers of self-assembled small molecules, J. Mater. Chem., 2007, 17, 2385-2393. Web of ScienceCrossrefGoogle Scholar

  • [27] Guler M.O., Stupp S.I., A self-assembled nanofiber catalyst for ester hydrolysis, J. Am. Chem. Soc., 2007, 129, 12082-12083. Web of ScienceGoogle Scholar

  • [28] Fleming S., Ulijn R.V., Design of nanostructures based on aromatic peptide amphiphiles, Chem. Soc. Rev., 2014, 43, 8150-8177. Web of ScienceCrossrefGoogle Scholar

  • [29] Huang Z.P., Guan S.W., Wang Y.G., Shi G.N., Cao L.N., Gao Y.Z., Dong Z.Y., Xu J.Y., Luo Q., Liu J.Q., Self-assembly of amphiphilic peptides into bio-functionalized nanotubes: a novel hydrolase model, Journal of Materials Chemistry B, 2013, 1, 2297-2304. Google Scholar

  • [30] Mahler A., Reches M., Rechter M., Cohen S., Gazit E., Rigid, self-assembled hydrogel composed of a modified aromatic dipeptide, Adv. Mater., 2006, 18, 1365-1370. CrossrefGoogle Scholar

  • [31] Zhang C.Q., Xue X.D., Luo Q., Li Y.W., Yang K.N., Zhuang X.X., Jiang Y.G., Zhang J.C., Liu J.Q., Zou G.Z., et al., Self-Assembled Peptide Nanofibers Designed as Biological Enzymes for Catalyzing Ester Hydrolysis, Acs Nano, 2014, 8, 11715-11723. Web of ScienceCrossrefGoogle Scholar

  • [32] Aggeli A., Bell M., Boden N., Keen J.N., Knowles P.F., McLeish T.C.B., Pitkeathly M., Radford S.E., Responsive gels formed by the spontaneous self-assembly of peptides into polymeric beta-sheet tapes, Nature., 1997, 386, 259-262. Google Scholar

  • [33] Collier J.H., Messersmith P.B., Enzymatic modification of self-assembled peptide structures with tissue transglutaminase, Bioconjugate Chem., 2003, 14, 748-755. CrossrefGoogle Scholar

  • [34] Jung J.P., Nagaraj A.K., Fox E.K., Rudra J.S., Devgun J.M., Collier J.H., Co-assembling peptides as defined matrices for endothelial cells, Biomaterials., 2009, 30, 2400-2410. CrossrefWeb of ScienceGoogle Scholar

  • [35] Rufo C.M., Moroz Y.S., Moroz O.V., Stohr J., Smith T.A., Hu X.Z., DeGrado W.F., Korendovych I.V., Short peptides self-assemble to produce catalytic amyloids, Nat. Chem., 2014, 6, 303-309. Web of ScienceCrossrefGoogle Scholar

  • [36] Wei Y.N., Hecht M.H., Enzyme-like proteins from an unselected library of designed amino acid sequences, Protein Eng., Des. Sel., 2004, 17, 67-75. CrossrefGoogle Scholar

  • [37] Patel S.C., Bradley L.H., Jinadasa S.P., Hecht M.H., Cofactor binding and enzymatic activity in an unevolved superfamily of de novo designed 4-helix bundle proteins, Protein Sci., 2009, 18, 1388-1400. CrossrefWeb of ScienceGoogle Scholar

  • [38] Baltzer L., Broo K.S., Nilsson H., Nilsson J., Designed four-helix bundle catalysts - the engineering of reactive sites for hydrolysis and transesterification reactions of p-nitrophenyl esters, Bioorg. Med. Chem., 1999, 7, 83-91. CrossrefGoogle Scholar

  • [39] Broo K.S., Brive L., Ahlberg P., Baltzer L., Catalysis of hydrolysis and transesterification reactions of p-nitrophenyl esters by a designed helix-loop-helix dimer, J. Am. Chem. Soc., 1997, 119, 11362-11372. Google Scholar

  • [40] Singh N., Conte M.P., Ulijn R.V., Miravet J.F., Escuder B., Insight into the esterase like activity demonstrated by an imidazole appended self-assembling hydrogelator, Chem. Commun., (in press), DOI: 10.1039/c5cc04281j. CrossrefWeb of ScienceGoogle Scholar

  • [41] Zaramella D., Scrimin P., Prins L.J., Self-Assembly of a Catalytic Multivalent Peptide-Nanoparticle Complex, J. Am. Chem. Soc., 2012, 134, 8396-8399. Web of ScienceGoogle Scholar

  • [42] Maeda Y., Javid N., Duncan K., Birchall L., Gibson K.F., Cannon D., Kanetsuki Y., Knapp C., Tuttle T., Ulijn R.V., et al., Discovery of Catalytic Phages by Biocatalytic Self-Assembly, J. Am. Chem. Soc., 2014, 136, 15893-15896. Google Scholar

  • [43] Rodriguez-Llansola F., Escuder B., Miravet J.F., Switchable Perfomance of an L-Proline-Derived Basic Catalyst Controlled by Supramolecular Gelation, J. Am. Chem. Soc., 2009, 131, 11478-11484. Web of ScienceGoogle Scholar

  • [44] Rodriguez-Llansola F., Miravet J.F., Escuder B., A supramolecular hydrogel as a reusable heterogeneous catalyst for the direct aldol reaction, Chem. Commun., 2009, 7303-7305. Web of ScienceCrossrefGoogle Scholar

  • [45] Pasquato L., Rancan F., Scrimin P., Mancin F., Frigeri C., N-methylimidazole-functionalized gold nanoparticles as catalysts for cleavage of a carboxylic acid ester, Chem. Commun., 2000, 2253-2254. CrossrefGoogle Scholar

  • [46] Zaramella D., Scrimin P., Prins L.J., Catalysis of Transesterification Reactions by a Self-Assembled Nanosystem, Int. J. Mol. Sci., 2013, 14, 2011-2021. CrossrefWeb of ScienceGoogle Scholar

  • [47] Casey J.P., Barbero R.J., Heldman N., Belcher A.M., Versatile de Novo Enzyme Activity in Capsid Proteins from an Engineered M13 Bacteriophage Library, J. Am. Chem. Soc., 2014, 136, 16508-16514. Web of ScienceGoogle Scholar

About the article

Received: 2015-05-15

Accepted: 2015-08-05

Published Online: 2015-09-01


Citation Information: Biocatalysis, Volume 1, Issue 1, Pages 67–81, ISSN (Online) 2353-1746, DOI: https://doi.org/10.1515/boca-2015-0005.

Export Citation

© 2015 Krystyna L. Duncan, Rein V.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Kousik Gayen, Kingshuk Basu, Dipayan Bairagi, Valeria Castelletto, Ian W. Hamley, and Arindam Banerjee
ACS Applied Bio Materials, 2018
[2]
Zsofia Lengyel, Caroline M. Rufo, Yurii S. Moroz, Olga V. Makhlynets, and Ivan V Korendovych
ACS Catalysis, 2017
[3]
Olga Taran, Chenrui Chen, Tolulope O. Omosun, Ming-Chien Hsieh, Allisandra Rha, Jay T. Goodwin, Anil K. Mehta, Martha A. Grover, and David G. Lynn
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, Volume 375, Number 2109, Page 20160356
[4]
Chunqiu Zhang, Ramim Shafi, Ayala Lampel, Douglas MacPherson, Charalampos G. Pappas, Vishal Narang, Tong Wang, Charles Maldarelli, and Rein V. Ulijn
Angewandte Chemie, 2017
[5]
Chunqiu Zhang, Ramim Shafi, Ayala Lampel, Douglas MacPherson, Charalampos G. Pappas, Vishal Narang, Tong Wang, Charles Maldarelli, and Rein V. Ulijn
Angewandte Chemie International Edition, 2017
[6]
Matthew J. Webber and Robert Langer
Chem. Soc. Rev., 2017
[7]
Ting Zhou, Zhiqing Zhang, Xuemei Zhang, Chen Wang, Guiying Xu, and Yanlian Yang
Journal of Peptide Science, 2017
[8]
Nishant Singh and Beatriu Escuder
Chemistry - A European Journal, 2017, Volume 23, Number 41, Page 9946
[9]
A. M. Garcia, M. Kurbasic, S. Kralj, M. Melchionna, and S. Marchesan
Chem. Commun., 2017, Volume 53, Number 58, Page 8110
[10]
Rafal Wieczorek, Katarzyna Adamala, Tecla Gasperi, Fabio Polticelli, and Pasquale Stano
Life, 2017, Volume 7, Number 2, Page 19
[11]
Nishant Singh, Mohit Kumar, Juan F. Miravet, Rein V. Ulijn, and Beatriu Escuder
Chemistry - A European Journal, 2017, Volume 23, Number 5, Page 981
[12]
Yoshiaki Maeda, Olga V. Makhlynets, Hiroshi Matsui, and Ivan V. Korendovych
Annual Review of Biomedical Engineering, 2016, Volume 18, Number 1, Page 311
[13]
Bhupesh Goyal , Kinshuk Raj Srivastava , Kirti Patel , and Susheel Durani
ChemistrySelect, 2016, Volume 1, Number 9, Page 2050
[14]
Olga V. Makhlynets, Pallavi M. Gosavi, and Ivan V. Korendovych
Angewandte Chemie International Edition, 2016, Volume 55, Number 31, Page 9017
[15]
Olga V. Makhlynets, Pallavi M. Gosavi, and Ivan V. Korendovych
Angewandte Chemie, 2016, Volume 128, Number 31, Page 9163
[16]
Marta Tena-Solsona, Jayanta Nanda, Santiago Díaz-Oltra, Agata Chotera, Gonen Ashkenasy, and Beatriu Escuder
Chemistry - A European Journal, 2016, Volume 22, Number 19, Page 6687
[17]
Angelique N. Besold, Leland R. Widger, Frances Namuswe, Jamie L. Michalek, Sarah L. J. Michel, and David P. Goldberg
Mol. BioSyst., 2016, Volume 12, Number 4, Page 1183

Comments (0)

Please log in or register to comment.
Log in