Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biocatalysis

1 Issue per year

Open Access
Online
ISSN
2353-1746
See all formats and pricing
More options …

Biocatalytic synthesis of (S)-Practolol, a selective β-blocker

Sachin Mulik
  • Corresponding author
  • Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Sector-67,,S. A. S. Nagar-160062, Punjab
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Saptarshi Ghosh
  • Corresponding author
  • Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Sector-67,,S. A. S. Nagar-160062, Punjab
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jayeeta Bhaumik
  • Corresponding author
  • Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Sector-67,,S. A. S. Nagar-160062, Punjab
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Uttam C. Banerjee
  • Corresponding author
  • Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Sector-67,,S. A. S. Nagar-160062, Punjab
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-01-20 | DOI: https://doi.org/10.1515/boca-2015-0006

Abstract

The present study describes an efficient chemoenzymatic synthesis of enantiopure (S)-Practolol, a selective β-adrenergic receptor blocker. Prior to the synthesis of the target, a synthetic protocol for (RS)-N-4-(3-chloro-2-hydroxypropoxy)phenylacetamide, an essential precursor, was developed. Various commercial lipases were screened for the kinetic resolution of (RS)- N-4-(3-chloro-2-hydroxypropoxy)phenylacetamide using toluene as solvent and vinyl acetate as an acyl donor. Among various lipases screened, Pseudomonas cepacia sol-gel AK showed the highest enantioselectivity (96% enantiomeric excess with 50% conversion), affording (S)-1-(4-acetamidophenoxy)-3-chloropropan-2-yl acetate. Optimization of the reaction parameters was carried out in order to find the best-suited conditions for the biocatalysis. Furthermore, the enantiopure intermediate was hydrolyzed and the resulting product was reacted with isopropylamine to afford (S)-Practolol. This biocatalytic procedure depicts a green technology for the synthesis of (S)-Practolol with better yield and enantiomeric excess.

This article offers supplementary material which is provided at the end of the article.

Keywords: enantiopure; lipase; chemoenzymatic; enantioselectivity; biocatalysis

References

  • [1] Brew J., Baxter A.D., Bannister R.M., Use of beta-aminoalcohols in the treatment of inflammatory disorders and pain, EP1993525 A1. 2008. Google Scholar

  • [2] (a) Siebert C.D., Hansicke A., Nagel T., Stereochemical comparison of nebivolol with other β-blockers, Chirality, 2008, 20, 103-109. (b) Ellison K.E., Gandhi G., Optimising the use of beta-adrenoceptor antagonists in coronary artery disease, Drugs, 2005, 65, 787-797. CrossrefGoogle Scholar

  • [3] Baran D., Horn E.M., Hryniewicz K., Katz S.D., Effects of beta-blockers on neurohormonal activation in patients with congestive heart failure, Drugs, 2000, 60, 997-1016. CrossrefGoogle Scholar

  • [4] Teerlink J.R., Massie B.M., Beta-adrenergic blocker mortality trials in congestive heart failure, Am. J. Cardiol., 1999, 84, 94-102] CrossrefGoogle Scholar

  • [5] Bredikhin A.A., Bredikhina Z.A., Zakharychev D.V., Akhatova F.S., Krivolapov D., Litvinov I.A., Solid-state properties of 1, 2-epoxy-3-(2-cyanophenoxy) propane, a conglomerateforming chiral drug precursor, Mendeleev Commun., 2006, 16, 245-247. CrossrefGoogle Scholar

  • [6] Masuda K., Tamagake K., Katsu T., Torigoe F., Saito K., Hanioka N., Yamano S., Yamamoto S., Narimatsu S., Roles of phenylalanine at position 120 and glutamic acid at position 222 in the oxidation of chiral substrates by cytochrome P450 2D6, Chirality, 2006, 18, 167-176. Google Scholar

  • [7] Leftheris K., Goodman M., Synthesis and beta-adrenergic antagonist activity of stereoisomeric practolol and propranolol derivatives, J. Med. Chem., 1990, 33, 216-223. CrossrefGoogle Scholar

  • [8] Kumar P., Naidu V., Gupta P., Application of hydrolytic kinetic resolution (HKR) in the synthesis of bioactive compounds, Tetrahedron, 2007, 63, 2745–2785. CrossrefGoogle Scholar

  • [9] Zelaszczyk D., Kiec-Kononowicz K., Biocatalytic approaches to optically active β-blockers, Curr. Med. Chem., 2007, 14, 53-65. CrossrefWeb of ScienceGoogle Scholar

  • [10] Sayyed I.A., Thakur V.V., Nikalje M.D., Dewkar G.K., Kotkar S.P., Sudalai A., Asymmetric synthesis of aryloxypropanolamines via OsO4-catalyzed asymmetric dihydroxylation, Tetrahedron, 2005, 61, 2831-2838. CrossrefGoogle Scholar

  • [11] Bredikhina Z.A., Akhatova F.S., Zakharychev D.V., Bredikhin A.A., Spontaneous resolution amongst chiral orthocyanophenyl glycerol derivatives: an effective preferential crystallization approach to a single enantiomer of the β-adrenoblocker bunitrolol, Tetrahedron: Asymm., 2008, 19, 1430-1435. CrossrefWeb of ScienceGoogle Scholar

  • [12] Bredikhin A.A., Bredikhina Z.A., Zakharychev D.V., Akhatova F.S., Krivolapov D.B., Litvinov I.A., Solid-state properties of 1,2-epoxy-3-(2-cyanophenoxy)propane, a conglo-merateforming chiral drug precursor, Mendeleev Commun., 2006, 16, 245-247. CrossrefGoogle Scholar

  • [13] Cepanec I., Litvic M., Mikuldaš H., Bartolinčić A., Vinković V., Calcium trifluoromethanesulfonate-catalysed aminolysis of epoxides, Tetrahedron, 2003, 59, 2435-2439. CrossrefGoogle Scholar

  • [14] Yadav J.S., Reddy B.V.S., Basak A.K., Narsaiah A.V., Ionic liquid: a novel reaction medium for the synthesis of beta-amino alcohols, Tetrahedron Lett., 2003, 44, 1047-1050. CrossrefGoogle Scholar

  • [15] Kitaori K., Furukawa Y., Yoshimoto H., Otera J., Regioselective nucleophilic reactions of phenols with oxiranes leading to enantiopure ß-blockers, Tetrahedron, 1999, 55, 14381-14390. CrossrefGoogle Scholar

  • [16] Borude V.S., Shah R.V., Shukla S.R., Synthesis of β-amino alcohol derivatives from phenols in presence of phase transfer catalyst and lipase biocatalyst, Curr. Chem. Lett., 2013, 2, 1-12. CrossrefGoogle Scholar

  • [17] Calleri E., Temporini C., Furlanetto S., Loiodice F., Fracchiolla G., Massolini G., Lipases for biocatalysis: development of a chromatographic bioreactor, J. Pharm. Biomed. Anal., 2003, 32, 715-724. CrossrefGoogle Scholar

  • [18] Khmelnitsky Y.L., Rich J.O., Biocatalysis in nonaqueous solvents, Curr. Opin. Chem. Biol., 1999, 3, 47-53. CrossrefGoogle Scholar

  • [19] Ader U., Schneider M.P., Enzyme assisted preparation of enantiomerically pure β-adrenergic blockers II. Building blocks of high optical purity and their synthetic conversion, Tetrahedron: Asymm., 1992, 3, 205-208. CrossrefGoogle Scholar

  • [20] Jacobsen E.E., Andresen L.S., Anthonsen T., Immobilization does not influence the enantioselectivity of CAL-B catalyzed kinetic resolution of secondary alcohols, Tetrahedron: Asymm., 2005, 16, 847–850. CrossrefGoogle Scholar

  • [21] Ader U., Schneider M.P., Enzyme assisted preparation of enantiomerically pure β-adrenergic blockers III. Optically active chlorohydrin derivatives and their conversion, Tetrahedron: Asymm., 1992, 3, 521.524. CrossrefGoogle Scholar

  • [22] Khan F.A., Dash J., Jain D., Prabhudas B., Rearrangement of 1,4,5,6-tetrahalo-7,7-dimethoxybicycloGoogle Scholar

  • [2.2.1]hept-5- en-2-ones to phenolic derivatives, J. Chem. Soc., Perkin Transactions, 2001, 1, 3132-3134. Google Scholar

  • [23] Thakkar N.V., Banerji A.A., Bevinakatti, H.S., Chemoenzymatic synthesis of S (-) Practolol, Biotechnol. Lett., 1995, 17, 217-218. CrossrefGoogle Scholar

  • [24] Bermudez J.L., Campo C.D., Salazar L., Llama E.F., Jose V. Sinisterra J.V., A New Application of Candida antarctica Lipase for Obtaining Natural Homochiral BBAs Aryloxypropanolamine, Tetrahedron: Asymm, 1996, 7, 2485-2488. CrossrefGoogle Scholar

  • [25] Hudson E.P., Eppler R.K., Clark D.S., Biocatalysis in semi-aqueous and nearly anhydrous conditions, Curr. Opin. Biotechnol., 2005, 16, 637-643. CrossrefGoogle Scholar

  • [26] Dordick J.S., Enzymatic catalysis in monophasic organic solvents, Enzym. Microb. Technol., 1989, 11, 194-211. CrossrefGoogle Scholar

  • [27] Khmelnitsky Y.L., Levashov A.V., Klyachko N.L., Martinek K., Engineering biocatalytic systems in organic media with low water content, Enzym. Microb. Technol., 1988, 10, 710-724. CrossrefGoogle Scholar

  • [28] Laane C., Boeren S., Vos K., Veeger C., Rules for optimization of biocatalysis in organic solvents, Biotechnol. Bioeng., 2004, 30, 81-87. CrossrefGoogle Scholar

  • [29] Gonzalo G.D., Brieva R., Sanchez V.M., Bayod M., Gotor V., Enzymatic alkoxy-carbonylation reactions on the intermediate in the synthesis of (-)-paroxetine, trans N-benzyloxycarbonyl-4-(4’-fluorophenyl)-3-hydroxymethylpiperidine, Tetrahedron: Asymm., 2003, 14, 1725. CrossrefGoogle Scholar

  • [30] Ferraboschi P., Pecora F., Reza-Elahi S., Santaniello E., Chemoenzymatic synthesis of (25R)- and (25S)-25-hydroxy- 27-nor-cholesterol, a steroid bearing a secondary hydroxy group in the side chain, Tetrahedron: Asymm., 1999, 10, 2497-2500. CrossrefGoogle Scholar

  • [31] Queiroz N., Nascimento M.G., Pseudomonas sp. lipase immobilized in polymers versus the use of free enzyme in the resolution of (R,S)-methyl mandelate, Tetrahedron Lett., 2002, 43, 5225-5227. CrossrefGoogle Scholar

  • [32] Gotor-Fernández V., Ferrero M., Fernández S., Gotor V., 1α,25-Dihydroxyvitamin D3 A-Ring Precursors: Studies on regioselective enzymatic alkoxycarbonylation reactions of their stereoisomers. Chemoenzymatic synthesis of A-ring synthon carbamate derivatives, including carbazates and polyamino carbamates, J. Org. Chem., 1999, 64, 7504 -7510. Google Scholar

  • [33] Egri G., Baitz-Gacs E., Poppe L., Kinetic resolution of 2-acylated-1,2-diols by lipase-catalyzed enantiomer selective acylation, Tetrahedron Asymm., 1996, 7, 1437-1448. CrossrefGoogle Scholar

About the article

Received: 2015-05-13

Accepted: 2015-09-28

Published Online: 2016-01-20


Citation Information: Biocatalysis, Volume 1, Issue 1, Pages 130–140, ISSN (Online) 2353-1746, DOI: https://doi.org/10.1515/boca-2015-0006.

Export Citation

© 2015 Sachin Mulik, et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in