Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biocatalysis

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2353-1746
See all formats and pricing
More options …

Fungal laccases as tools for biodegradation of industrial dyes

Paolo Zucca
  • Corresponding author
  • Dipartimento di Scienze Biomediche, Università di Cagliari, Cagliari, Italy
  • Consorzio UNO, Oristano, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gianmarco Cocco
  • Corresponding author
  • Dipartimento di Scienze Biomediche, Università di Cagliari, Cagliari, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Francesca Sollai
  • Corresponding author
  • Dipartimento di Scienze Biomediche, Università di Cagliari, Cagliari, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Enrico Sanjust
  • Corresponding author
  • Unità di Biochimica, Dipartimento di Scienze Biomediche, Complesso Universitario, 09042 Monserrato (CA) Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-01-20 | DOI: https://doi.org/10.1515/boca-2015-0007

Abstract

Laccases are blue copper oxidases, found in some plants and secreted by a wide range of ligninolytic fungi. These enzymes are well known for their ability in oxidizing several organic compounds, mainly phenolics and aromatic amines, at the expenses of molecular oxygen. Therefore, they could find application in the field of enzymatic bioremediation of many industrial wastewaters, and in particular to bleach and/or detoxify dye-containing effluents. Not all industrial dyes behave as laccase substrates, but this limitation is often overcome by the judicious use of redox mediators. These could substantially widen the application range of laccases as bioremediation tools. The present study encompasses the main properties of the most used industrial dyes as related to their chemical classification, fungal laccases and their molecular and catalytic features, the use of redox mediators, limitations and perspectives of the use of fungal laccases for industrial dye bleaching.

Keywords: Laccase; textile dyes; bleaching; bioremediation

References

  • [1] Yoshida H., LXIII.—Chemistry of lacquer (Urushi). Part I. Communication from the Chemical Society of Tokio, Journal of the Chemical Society, Transactions, 1883, 43, 472-486. Google Scholar

  • [2] Cambie R.C., Bocks S.M., A p-diphenol oxidase from gymnosperms, Phytochemistry, 1966, 5, 391-396. CrossrefGoogle Scholar

  • [3] Joel D.M., Marbach I., Mayer A.M., Laccase in Anacardiaceae, Phytochemistry, 1978, 17, 796-797. CrossrefGoogle Scholar

  • [4] Claus H., Laccases and their occurrence in prokaryotes, Arch. Microbiol., 2003, 179, 145-150. Google Scholar

  • [5] Ander P., Eriksson K.E., The importance of phenol oxidase activity in lignin degradation by the white-rot fungus Sporotrichum pulverulentum, Arch. Microbiol., 1976, 109, 1-8. CrossrefGoogle Scholar

  • [6] Baldrian P., Fungal laccases-occurrence and properties, FEMS Microbiol. Rev., 2006, 30, 215-242. CrossrefGoogle Scholar

  • [7] Elisashvili V., Kachlishvili E., Physiological regulation of laccase and manganese peroxidase production by white-rot Basidiomycetes, Journal of Biotechnology, 2009, 144, 37-42. Google Scholar

  • [8] Wu J.Q., Wen J.L., Yuan T.Q., Sun R.C., Integrated hot-compressed water and laccase-mediator treatments of Eucalyptus grandis fibers: Structural changes of fiber and lignin, Journal of Agricultural and Food Chemistry, 2015, 63, 1763-1772. Google Scholar

  • [9] Munk L., Sitarz A.K., Kalyani D.C., Mikkelsen J.D., Meyer A.S., Can laccases catalyze bond cleavage in lignin?, Biotechnol. Adv., 2015, 33, 13-24. CrossrefGoogle Scholar

  • [10] Heap L., Green A., Brown D., Van Dongen B., Turner N., Role of laccase as an enzymatic pretreatment method to improve lignocellulosic saccharification, Catalysis Science and Technology, 2014, 4, 2251-2259. Google Scholar

  • [11] Ryu S.H., Cho M.K., Kim M., Jung S.M., Seo J.H., Enhanced lignin biodegradation by a laccase-overexpressed white-rot fungus Polyporus brumalis in the pretreatment of wood chips, Appl. Biochem. Biotechnol., 2013, 171, 1525-1534. Google Scholar

  • [12] Chen Q., Marshall M.N., Geib S.M., Tien M., Richard T.L., Effects of laccase on lignin depolymerization and enzymatic hydrolysis of ensiled corn stover, Bioresour. Technol., 2012, 117, 186-192. CrossrefGoogle Scholar

  • [13] Virk A.P., Sharma P., Capalash N., Use of laccase in pulp and paper industry, Biotechnol. Prog., 2012, 28, 21-32. CrossrefGoogle Scholar

  • [14] Piscitelli A., Del Vecchio C., Faraco V., Giardina P., MacEllaro G., Miele A., Pezzella C., Sannia G., Fungal laccases: Versatile tools for lignocellulose transformation, Comptes Rendus - Biologies, 2011, 334, 789-794. Google Scholar

  • [15] Leonowicz A., Cho N., Luterek J., Wilkolazka A., Wojtas- Wasilewska M., Matuszewska A., Hofrichter M., Wesenberg D., Rogalski J., Fungal laccase: Properties and activity on lignin, J. Basic Microbiol., 2001, 41, 185-227. CrossrefGoogle Scholar

  • [16] Eggert C., Temp U., Eriksson K.E.L., Laccase is essential for lignin degradation by the white-rot fungus Pycnoporus cinnabarinus, FEBS Lett., 1997, 407, 89-92. Google Scholar

  • [17] Zucca P., Rescigno A., Rinaldi A.C., Sanjust E., Biomimetic metalloporphines and metalloporphyrins as potential tools for delignification: Molecular mechanisms and application perspectives, J. Mol. Catal. A: Chem., 2014, 388-389, 2-34. Google Scholar

  • [18] Laufer Z., Beckett R.P., Minibayeva F.V., Co-occurrence of the Multicopper Oxidases Tyrosinase and Laccase in Lichens in Sub-order Peltigerineae, Ann. Bot., 2006, 98, 1035-1042. CrossrefGoogle Scholar

  • [19] Farver O., Pecht I., Electron transfer in blue copper proteins, Coord. Chem. Rev., 2011, 255, 757-773. Google Scholar

  • [20] Asthana S., Zucca P., Vargiu A.V., Sanjust E., Ruggerone P., Rescigno A., Structure-Activity Relationship Study of Hydroxycoumarins and Mushroom Tyrosinase, Journal of Agricultural and Food Chemistry, 2015, 63, 7236-7244. Google Scholar

  • [21] Zucca P., Sanjust E., Loi M., Sollai F., Ballero M., Pintus M., Rescigno A., Isolation and characterization of polyphenol oxidase from Sardinian poisonous and non-poisonous chemotypes of Ferula communis (L.), Phytochemistry, 2013, 90, 16-24. CrossrefGoogle Scholar

  • [22] Rescigno A., Casañola-Martin G.M., Sanjust E., Zucca P., Marrero-Ponce Y., Vanilloid Derivatives as Tyrosinase Inhibitors Driven by Virtual Screening-Based QSAR Models, Drug Testing and Analysis, 2011, 3, 176-181. Google Scholar

  • [23] Pardo I., Camarero S., Laccase engineering by rational and evolutionary design, Cellular and Molecular Life Sciences, 2015, 72, 897-910. Google Scholar

  • [24] Sakurai T., Kataoka K., Structure and function of type I copper in multicopper oxidases, Cellular and Molecular Life Sciences, 2007, 64, 2642-2656. Google Scholar

  • [25] Hall J.F., Kanbi L.D., Strange R.W., Hasnain S.S., Role of the axial ligand in type 1 Cu centers studied by point mutations of Met148 in rusticyanin, Biochemistry, 1999, 38, 12675-12680. Google Scholar

  • [26] Xu F., Berka R.M., Wahleithner J.A., Nelson B.A., Shuster J.R., Brown S.H., Palmer A.E., Solomon E.I., Site-directed mutations in fungal laccase: Effect on redox potential, activity and pH profile, Biochemical Journal, 1998, 334, 63-70. Google Scholar

  • [27] Xu F., Palmer A.E., Yaver D.S., Berka R.M., Gambetta G.A., Brown S.H., Solomon E.I., Targeted mutations in a Trametes villosa laccase: Axial perturbations of the T1 copper, J. Biol. Chem., 1999, 274, 12372-12375. Google Scholar

  • [28] Miura Y., Tsujimura S., Kurose S., Kamitaka Y., Kataoka K., Sakurai T., Kano K., Direct Electrochemistry of CueO and Its Mutants at Residues to and Near Type I Cu for Oxygen-Reducing Biocathode, Fuel Cells, 2009, 9, 70-78. CrossrefGoogle Scholar

  • [29] Durão P., Bento I., Fernandes A.T., Melo E.P., Lindley P.F., Martins L.O., Perturbations of the T1 copper site in the CotA laccase from Bacillus subtilis: Structural, biochemical, enzymatic and stability studies, J. Biol. Inorg. Chem., 2006, 11, 514-526. Google Scholar

  • [30] Piontek K., Antorini M., Choinowski T., Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-Å resolution containing a full complement of coppers, J. Biol. Chem., 2002, 277, 37663-37669. Google Scholar

  • [31] Hong G., Ivnitski D.M., Johnson G.R., Atanassov P., Pachter R., Design parameters for tuning the type 1 Cu multicopper oxidase redox potential: Insight from a combination of first principles and empirical molecular dynamics simulations, J. Am. Chem. Soc., 2011, 133, 4802-4809. Google Scholar

  • [32] Yoon J., Solomon E.I., Electronic structure of the peroxy intermediate and its correlation to the native intermediate in the multicopper oxidases: Insights into the reductive cleavage of the O-O bond, J. Am. Chem. Soc., 2007, 129, 13127-13136. Google Scholar

  • [33] Messerschmidt A., Multi-copper oxidases, World Scientific, 1997. Google Scholar

  • [34] Baldrian P., Fungal laccases - occurrence and properties., FEMS Microbiol. Rev., 2006, 30, 215-242. CrossrefGoogle Scholar

  • [35] Munoz C., Guillén F., Martinez A., Martínez M., Laccase isoenzymes of Pleurotus eryngii: characterization, catalytic properties, and participation in activation of molecular oxygen and Mn2+ oxidation, Appl. Environ. Microbiol., 1997, 63, 2166-2174. Google Scholar

  • [36] Zucca P., Rescigno A., Olianas A., MacCioni S., Sollai F.A., Sanjust E., Induction, purification, and characterization of a laccase isozyme from Pleurotus sajor-caju and the potential in decolorization of textile dyes, Journal of Molecular Catalysis B: Enzymatic, 2011, 68, 216-222. CrossrefGoogle Scholar

  • [37] Leonowicz A., Trojanoeski J., Induction of a new laccase from the fungus Pleurotus ostreatus by ferulic acid, Microbios, 1975, 13, 167-174. Google Scholar

  • [38] Rogalski J., Lundell T.K., Leonowicz A., Hatakka A.I., Influence of aromatic compounds and lignin on production of ligninolytic enzymes by Phlebia radiata, Phytochemistry, 1991, 30, 2869-2872. CrossrefGoogle Scholar

  • [39] Ardon O., Kerem Z., Hadar Y., Enhancement of laccase activity in liquid cultures of the ligninolytic fungus Pleurotus ostreatus by cotton stalk extract, Journal of Biotechnology, 1996, 51, 201-207. Google Scholar

  • [40] Pozdnyakova N.N., Nikiforova S.V., Makarov O.E., Turkovskaya O.V., Effect of polycyclic aromatic hydrocarbons on laccase production by white rot fungus Pleurotus ostreatus D1, Applied Biochemistry and Microbiology, 2011, 47, 543-548. Google Scholar

  • [41] Karp S.G., Faraco V., Amore A., Letti L.A.J., Thomaz Soccol V., Soccol C.R., Statistical optimization of laccase production and delignification of sugarcane bagasse by Pleurotus ostreatus in solid-state fermentation, BioMed Research International, 2015, 2015. Google Scholar

  • [42] Fonseca M.I., Shimizu E., Zapata P.D., Villalba L.L., Copper inducing effect on laccase production of white rot fungi native from Misiones (Argentina), Enzyme and Microbial Technology, 2010, 46, 534-539. Google Scholar

  • [43] Baldrian P., Gabriel J., Copper and cadmium increase laccase activity in Pleurotus ostreatus, FEMS Microbiology Letters, 2002, 206, 69-74. Google Scholar

  • [44] Nakade K., Nakagawa Y., Yano A., Konno N., Sato T., Sakamoto Y., Effective induction of pblac1 laccase by copper ion in Polyporus brumalis ibrc05015, Fungal Biology, 2013, 117, 52-61. Google Scholar

  • [45] Khammuang S., Yuwa-amornpitak T., Svasti J., Sarnthima R., Copper induction of laccases by Lentinus polychrous under liquid-state fermentation, Biocatalysis and Agricultural Biotechnology, 2013, 2, 357-362. Google Scholar

  • [46] Yaropolov A.I., Skorobogat’ko O.V., Vartanov S.S., Varfolomeyev S.D., Laccase - Properties, catalytic mechanism, and applicability, Appl. Biochem. Biotechnol., 1994, 49, 257-280. CrossrefGoogle Scholar

  • [47] Jones S.M., Solomon E.I., Electron transfer and reaction mechanism of laccases, Cellular and Molecular Life Sciences, 2015. Google Scholar

  • [48] Solomon E.I., Sundaram U.M., Machonkic T.E., Multicopper Oxidases and Oxygenases, Chem. Rev. (Washington, DC, U. S.), 1996, 96, 2563-2605. CrossrefGoogle Scholar

  • [49] Mayer A.M., Staples R.C., Laccase: new functions for an old enzyme, Phytochemistry (Elsevier), 2002, 60, 551-565. CrossrefGoogle Scholar

  • [50] Thurston C.F., The structure and function of fungal laccases, Microbiology, 1994, 140, 19-26. CrossrefGoogle Scholar

  • [51] Guillén F., Muñoz C., Gómez-Toribio V., Martínez A.T., Martínez M.J., Oxygen activation during oxidation of methoxyhydroquinones by laccase from Pleurotus eryngii, Appl. Environ. Microbiol., 2000, 66, 170-175. CrossrefGoogle Scholar

  • [52] Bruyneel F., Dive G., Marchand-Brynaert J., Non-symmetrically substituted phenoxazinones from laccase-mediated oxidative cross-coupling of aminophenols: An experimental and theoretical insight, Organic and Biomolecular Chemistry, 2012, 10, 1834-1846. Google Scholar

  • [53] Bertrand T., Jolivalt C., Briozzo P., Caminade E., Joly N., Madzak C., Mougin C., Crystal structure of a four-copper laccase complexed with an arylamine: Insights into substrate recognition and correlation with kinetics, Biochemistry, 2002, 41, 7325-7333. CrossrefGoogle Scholar

  • [54] Witayakran S., Ragauskas A.J., Synthetic Applications of Laccase in Green Chemistry, Adv. Synth. Catal., 2009, 351, 1187-1209. Google Scholar

  • [55] Gierer J., Chemistry of delignification, Wood Sci. Technol., 1986, 20, 1-33. CrossrefGoogle Scholar

  • [56] Alcalde M., Laccases: Biological functions, molecular structure and industrial applications, in: Industrial Enzymes: Structure, Function and Applications, 2007, pp. 461-476. Google Scholar

  • [57] Kawai S., Umezawa T., Higuchi T., Oxidation of Methoxylated Benzyl Alcohols by Laccase of Coriolus versicolor in the Presence of Syringaldehyde, Wood research: bulletin of the Wood Research Institute Kyoto University, 1989, 76, 10-16. Google Scholar

  • [58] Bourbonnais R., Paice M.G., Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation, FEBS Lett., 1990, 267, 99-102. Google Scholar

  • [59] Call H.P., Mücke I., History, overview and applications of mediated lignolytic systems, especially laccase-mediatorsystems (Lignozym®-process), J. Biotechnol., 1997, 53, 163-202. Google Scholar

  • [60] Cañas A.I., Camarero S., Laccases and their natural mediators: Biotechnological tools for sustainable eco-friendly processes, Biotechnol. Adv., 2010, 28, 694-705. CrossrefGoogle Scholar

  • [61] Johannes C., Majcherczyk A., Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems, Appl. Environ. Microbiol., 2000, 66, 524-528. CrossrefGoogle Scholar

  • [62] Maruyama T., Komatsu C., Michizoe J., Sakai S., Goto M., Laccase-mediated degradation and reduction of toxicity of the postharvest fungicide imazalil, Process Biochem., 2007, 42, 459-461. CrossrefGoogle Scholar

  • [63] Camarero S., Ibarra D., Martínez M.J., Martínez Á.T., Ligninderived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes, Appl. Environ. Microbiol., 2005, 71, 1775-1784. CrossrefGoogle Scholar

  • [64] Dubé E., Shareck F., Hurtubise Y., Beauregard M., Daneault C., Decolourization of recalcitrant dyes with a laccase from Streptomyces coelicolor under alkaline conditions, Journal of Industrial Microbiology and Biotechnology, 2008, 35, 1123-1129. Google Scholar

  • [65] Murugesan K., Yang I.H., Kim Y.M., Jeon J.R., Chang Y.S., Enhanced transformation of malachite green by laccase of Ganoderma lucidum in the presence of natural phenolic compounds Appl. Microbiol. Biotechnol., 2009, 82, 341-350. CrossrefGoogle Scholar

  • [66] Eggert C., Temp U., Dean J.F.D., Eriksson K.E.L., A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase, FEBS Lett., 1996, 391, 144-148. Google Scholar

  • [67] D’Acunzo F., Galli C., Gentili P., Sergi F., Mechanistic and steric issues in the oxidation of phenolic and non-phenolic compounds by laccase or laccase-mediator systems. the case of bifunctional substrates, New J. Chem., 2006, 30, 583-591. CrossrefGoogle Scholar

  • [68] Tojo G., Fernández M., Activated Dimethyl Sulfoxide, Oxidation of Alcohols to Aldehydes and Ketones: A Guide to Current Common Practice, 2006, 97-179. Google Scholar

  • [69] Kubala D., Regeta K., Janečková R., Fedor J., Grimme S., Hansen A., Nesvadba P., Allan M., The electronic structure of TEMPO, its cation and anion, Mol. Phys., 2013, 111, 2033-2040. CrossrefGoogle Scholar

  • [70] Mendoza L., Jonstrup M., Hatti-Kaul R., Mattiasson B., Azo dye decolorization by a laccase/mediator system in a membrane reactor: Enzyme and mediator reusability, Enzyme and Microbial Technology, 2011, 49, 478-484. Google Scholar

  • [71] Shiraishi T., Sannami Y., Kamitakahara H., Takano T., Comparison of a series of laccase mediators in the electrooxidation reactions of non-phenolic lignin model compounds, Electrochim. Acta, 2013, 106, 440-446. CrossrefGoogle Scholar

  • [72] Astolti P., Brandi P., Galli C., Gentili P., Gerini M.F., Greci L., Lanzalunga O., New mediators for the enzyme laccase: Mechanistic features and selectivity in the oxidation of non-phenolic substrates, New J. Chem., 2005, 29, 1308-1317. CrossrefGoogle Scholar

  • [73] D’Acunzo F., Galli C., First evidence of catalytic mediation by phenolic compounds in the laccase-induced oxidation of lignin models, European Journal of Biochemistry, 2003, 270, 3634-3640. Google Scholar

  • [74] Cantarella G., Galli C., Gentili P., Free radical versus electrontransfer routes of oxidation of hydrocarbons by laccase/ mediator systems: Catalytic or stoichiometric procedures, Journal of Molecular Catalysis B: Enzymatic, 2003, 22, 135-144. CrossrefGoogle Scholar

  • [75] Calcaterra A., Galli C., Gentili P., Phenolic compounds as likely natural mediators of laccase: A mechanistic assessment, Journal of Molecular Catalysis B: Enzymatic, 2008, 51, 118-120. CrossrefGoogle Scholar

  • [76] Cañas A.I., Alcalde M., Plou F., Martínez M.J., Martínez Á.T., Camarero S., Transformation of polycyclic aromatic hydrocarbons by laccase is strongly enhanced by phenolic compounds present in soil, Environ. Sci. Technol., 2007, 41, 2964-2971. CrossrefGoogle Scholar

  • [77] Jeon J.R., Murugesan K., Kim Y.M., Kim E.J., Chang Y.S., Synergistic effect of laccase mediators on pentachlorophenol removal by Ganoderma lucidum laccase, Applied Microbiology and Biotechnology, 2008, 81, 783-790. Google Scholar

  • [78] Pickard M.A., Roman R., Tinoco R., Vazquez-Duhalt R., Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laccase, Appl. Environ. Microbiol., 1999, 65, 3805-3809. Google Scholar

  • [79] Banat I.M., Nigam P., Singh D., Marchant R., Microbial decolorization of textile-dye-containing effluents: A review, Bioresour. Technol., 1996, 58, 217-227. CrossrefGoogle Scholar

  • [80] Forgacs E., Cserháti T., Oros G., Removal of synthetic dyes from wastewaters: a review, Environ. Int., 2004, 30, 953-971. CrossrefGoogle Scholar

  • [81] Pierce J., Colour in textile effluents - the origins of the problem, J. Soc. Dyers Colour., 1994, 110, pp 131-133. Google Scholar

  • [82] Dasgupta J., Sikder J., Chakraborty S., Curcio S., Drioli E., Remediation of textile effluents by membrane based treatment techniques: A state of the art review, J. Environ. Manag., 2015, 147, 55-72. Google Scholar

  • [83] Vajnhandl S., Valh J.V., The status of water reuse in European textile sector, J. Environ. Manag., 2014, 141, 29-35. CrossrefGoogle Scholar

  • [84] Chiavola A., Textiles, Water Environ. Res., 2012, 84, 1511-1532. CrossrefGoogle Scholar

  • [85] McMullan G., Meehan C., Conneely A., Kirby N., Robinson T., Nigam P., Banat I.M., Marchant R., Smyth W.F., Microbial decolourisation and degradation of textile dyes, Applied Microbiology and Biotechnology, 2001, 56, 81-87. Google Scholar

  • [86] Zucca P., Rescigno A., Pintus M., Rinaldi A.C., Sanjust E., Degradation of textile dyes using immobilized lignin peroxidase-like metalloporphines under mild experimental conditions, Chemistry Central Journal, 2012, 6. Google Scholar

  • [87] Karthik V., Saravanan K., Bharathi P., Dharanya V., Meiaraj C., An overview of treatments for the removal of textile dyes, Journal of Chemical and Pharmaceutical Sciences, 2014, 7, 301-307. Google Scholar

  • [88] Karthik V., Saravanan K., Thomas T., Devi M., Review on microbial decolourisation of textile dyes, Journal of Chemical and Pharmaceutical Sciences, 2014, 7, 293-300. Google Scholar

  • [89] Muhd Julkapli N., Bagheri S., Bee Abd Hamid S., Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes, Scientific World Journal, 2014, 2014. Google Scholar

  • [90] Türgay O., Ersöz G., Atalay S., Forss J., Welander U., The treatment of azo dyes found in textile industry wastewater by anaerobic biological method and chemical oxidation, Sep. Purif. Technol., 2011, 79, 26-33. CrossrefGoogle Scholar

  • [91] Yang Z., Liu X., Gao B., Zhao S., Wang Y., Yue Q., Li Q., Flocculation kinetics and floc characteristics of dye wastewater by polyferric chloride-poly-epichlorohydrin-dimethylamine composite flocculant, Sep. Purif. Technol., 2013, 118, 583-590. CrossrefGoogle Scholar

  • [92] Gregory P., Classification of Dyes by Chemical Structure, in: Waring, D., Hallas G. (Eds.) The Chemistry and Application of Dyes, Springer US, 1990, pp. 17-47. Google Scholar

  • [93] Gregory P., Historical Perspectives, in: High-Technology Applications of Organic Colorants, Springer US, 1991, pp. 1-3. Google Scholar

  • [94] Colour Index, Vol. 4, 3rd Edition, The Society of Dyers and Colourists, Bradford, UK, 1971. Google Scholar

  • [95] Zollinger H., Color Chemistry: Syntheses, Properties, and Applications of Organic Dyes and Pigments, Wiley, 2003. Google Scholar

  • [96] Gordon P.F., Gregory P., Organic Chemistry in Colour, Springer Berlin Heidelberg, 1983. Google Scholar

  • [97] Gaboriaud-Kolar N., Nam S., Skaltsounis A.L., A colorful history: the evolution of indigoids, Progress in the chemistry of organic natural products, 2014, 99, 69-145. Google Scholar

  • [98] Cooksey C., Tyrian purple: The first four thousand years, Sci. Prog., 2013, 96, 171-186. CrossrefGoogle Scholar

  • [99] Mujumdar R.B., Ernst L.A., Mujumdar S.R., Lewis C.J., Waggoner A.S., Cyanine dye labeling reagents: Sulfoindocyanine succinimidyl esters, Bioconjug. Chem., 1993, 4, 105-111. CrossrefGoogle Scholar

  • [100] Pardal A.C., Ramos S.S., Santos L., Almeida P., Synthesis and fixation of aminocyanines to microcrystalline cellulose using cyanuric chloride as a cross-linking agent, Color. Technol., 2001, 117, 43-48. CrossrefGoogle Scholar

  • [101] Zollinger H., Color Chemistry, 2nd Ed., VCH Verlagsgelleschaft, Weinheim, DE, 1991. Google Scholar

  • [102] Griffiths J., Colour and constitution of organic molecules, Academic Press, 1976. Google Scholar

  • [103] Anderson J.S., Bradbrook E.F., Cook A.H., Linstead R.P., 212. Phthalocyanines and associated compounds. Part XIII. Absorption spectra, Journal of the Chemical Society (Resumed), 1938, 1151-1156. Google Scholar

  • [104] Heid C., Holoubek R., Klein R., 100 Jähre Schwefelfarbstoffe (100 Years of Sulfur Dyes), Melliand Textilber Int., 1973, 54, 1314-1327. Google Scholar

  • [105] Leonowicz A., Matuszewska A., Luterek J., Ziegenhagen D., Wojtaś-Wasilewska M., Cho N.-S., Hofrichter M., Rogalski J., Biodegradation of Lignin by White Rot Fungi, Fungal Genet. Biol., 1999, 27, 175-185. CrossrefGoogle Scholar

  • [106] Ding Z., Chen Y., Xu Z., Peng L., Xu G., Gu Z., Zhang L., Shi G., Zhang K., Production and characterization of laccase from Pleurotus ferulae in submerged fermentation, Ann. Microbiol., 2014, 64, 121-129. CrossrefGoogle Scholar

  • [107] Giardina P., Autore F., Faraco V., Festa G., Palmieri G., Piscitelli A., Sannia G., Structural characterization of heterodimeric laccases from Pleurotus ostreatus, Appl. Biochem. Biotechnol., 2007, 75, 1293-1300. Google Scholar

  • [108] Youn H.D., Hah Y.C., Kang S.O., Role of Laccase in Lignin Degradation by White-Rot Fungi, FEMS Microbiol. Lett., 1995, 132, 183-188. CrossrefGoogle Scholar

  • [109] Sarkanen K.V., Ludwig C.H., Lignins: Occurence, Formation, Structure, and Reactions, Wiley Interscience, New York, 1971. Google Scholar

  • [110] Adler E., Lignin chemistry-past, present and future, Wood Science and Technology, 1977, 11, 169-218. CrossrefGoogle Scholar

  • [111] Higuchi T., Lignin biochemistry: Biosynthesis and biodegradation, Wood Sci. Technol., 1990, 24, 23-63. Google Scholar

  • [112] Brown S.A., Chemistry of Lignification: Biochemical research on lignins is yielding clues to the structure and formation of these complex polymers, Science, 1961, 134, 305-313. CrossrefGoogle Scholar

  • [113] Voxeur A., Wang Y., Sibout R., Lignification: different mechanisms for a versatile polymer, Curr. Opin. Plant Biol., 2015, 23, 83-90. CrossrefGoogle Scholar

  • [114] Hatakka A., Lignin-modifying enzymes from selected white-rot fungi: Production and role in lignin degradation, FEMS Microbiol. Rev., 1994, 13, 125-135. CrossrefGoogle Scholar

  • [115] ten Have R., Teunissen P.J.M., Oxidative mechanisms involved in lignin degradation by white-rot fungi, Chem. Rev., 2001, 101, 3397-3413. Google Scholar

  • [116] Breen A., Singleton F.L., Fungi in lignocellulose breakdown and biopulping, Curr. Opin. Biotechnol., 1999, 10, 252-258. CrossrefGoogle Scholar

  • [117] Fackler K., Gradinger C., Hinterstoisser B., Messner K., Schwanninger M., Lignin degradation by white rot fungi on spruce wood shavings during short-time solid-state fermentations monitored by near infrared spectroscopy, Enzyme and Microbial Technology, 2006, 39, 1476-1483. Google Scholar

  • [118] Jeffries T., Biodegradation of lignin and hemicelluloses, in: Ratledge, C. (Ed.) Biochemistry of microbial degradation, Springer Netherlands, 1994, pp. 233-277. Google Scholar

  • [119] Lundell T.K., Makela M.R., Hilden K., Lignin-modifying enzymes in filamentous basidiomycetes--ecological, functional and phylogenetic review, J. Basic Microbiol., 2010, 50, 5-20. CrossrefGoogle Scholar

  • [120] Martinez A.T., Speranza M., Ruiz-Duenas F.J., Ferreira P., Camarero S., Guillen F., Martinez M.J., Gutierrez A., del Rio J.C., Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin, Int. Microbiol., 2005, 8, 195-204. Google Scholar

  • [121] Palm-Espling M.E., Niemiec M.S., Wittung-Stafshede P., Role of metal in folding and stability of copper proteins in vitro, Biochimica et Biophysica Acta - Molecular Cell Research, 2012, 1823, 1594-1603. Google Scholar

  • [122] Timofeevski S.L., Reading N.S., Aust S.D., Mechanisms for protection against inactivation of manganese peroxidase by hydrogen peroxide, Arch. Biochem. Biophys., 1998, 356, 287-295. Google Scholar

  • [123] Wariishi H., Gold M.H., Lignin peroxidase compound III: Mechanism of formation and decomposition, J. Biol. Chem., 1990, 265, 2070-2077. Google Scholar

  • [124] Valderrama B., Ayala M., Vazquez-Duhalt R., Suicide inactivation of peroxidases and the challenge of engineering more robust enzymes, Chemistry and Biology, 2002, 9, 555-565. Google Scholar

  • [125] Zucca P., Cocco G., Pintus M., Rescigno A., Sanjust E., Biomimetic sulfide oxidation by the means of immobilized Fe(III)-5,10,15,20-tetrakis(pentafluorophenyl)porphin under mild experimental conditions, Journal of Chemistry, 2013, 651274, 1-7. Google Scholar

  • [126] Zucca P., Mocci G., Rescigno A., Sanjust E., 5,10,15,20-Tetrakis(4-sulfonato-phenyl)porphine-Mn(III) immobilized on imidazole-activated silica as a novel ligninperoxidase- like biomimetic catalyst, J. Mol. Catal. A: Chem., 2007, 278, 220-227. Google Scholar

  • [127] Zucca P., Rescigno A., Sanjust E., Ligninolytic peroxidase-like activity of a synthetic metalloporphine immobilized onto mercapto-grafted crosslinked PVA inspired by the active site of cytochrome P450, Cuihua Xuebao/Chinese Journal of Catalysis, 2011, 32, 1663-1666. Google Scholar

  • [128] Forrester I.T., Grabski A.C., Burgess R.R., Leatham G.F., Manganese, Mn-dependent peroxidases, and the biodegradation of lignin, Biochem. Biophys. Res. Commun., 1988, 157, 992-999. Google Scholar

  • [129] Hammel K.E., Cullen D., Role of fungal peroxidases in biological ligninolysis, Curr. Opin. Plant Biol., 2008, 11, 349-355. CrossrefGoogle Scholar

  • [130] Hofrichter M., Review: Lignin conversion by manganese peroxidase (MnP), Enzyme and Microbial Technology, 2002, 30, 454-466. Google Scholar

  • [131] Marques G., Gamelas J.A.F., Ruiz-Dueñas F.J., del Rio J.C., Evtuguin D.V., Martínez A.T., Gutiérrez A., Delignification of eucalypt kraft pulp with manganese-substituted polyoxometalate assisted by fungal versatile peroxidase, Bioresour. Technol., 2010, 101, 5935-5940. CrossrefGoogle Scholar

  • [132] Nugroho Prasetyo E., Kudanga T., Østergaard L., Rencoret J., Gutiérrez A., del Río J.C., et al., Polymerization of lignosulfonates by the laccase-HBT (1-hydroxybenzotriazole) system improves dispersibility, Bioresour. Technol., 2010, 101, 5054-5062. CrossrefGoogle Scholar

  • [133] Arora D.S., Sharma R.K., Ligninolytic Fungal Laccases and Their Biotechnological Applications, Appl. Biochem. Biotechnol., 2010, 160, 1760-1788. Google Scholar

  • [134] Kirk T.K., Shimada M., CHAPTER 21 - Lignin Biodegradation: The Microorganisms Involved and the Physiology and Biochemistry of Degradation by White-Rot Fungi, in: Higuchi, T. (Ed.) Biosynthesis and Biodegradation of Wood Components, Academic Press, 1985, pp. 579-605. Google Scholar

  • [135] Ander P., Eriksson K.E., Yu H.s., Vanillic acid metabolism by Sporotrichum pulverulentum: evidence for demethoxylation before ring-cleavage, Arch. Microbiol., 1983, 136, 1-6. CrossrefGoogle Scholar

  • [136] Gómez-Toribio V., García-Martín A.B., Martínez M.J., Martínez Á.T., Guillén F., Induction of extracellular hydroxyl radical production by white-rot fungi through quinone redox cycling, Appl. Environ. Microbiol., 2009, 75, 3944-3953. CrossrefGoogle Scholar

  • [137] Stahl J.D., Rasmussen S.J., Aust S.D., Reduction of Quinones and Radicals by a Plasma Membrane Redox System of Phanerochaete chrysosporium, Arch. Biochem. Biophys., 1995, 322, 221-227. Google Scholar

  • [138] Curreli N., Rescigno A., Rinaldi A., Pisu B., Sollai F., Sanjust E., Degradation of juglone by Pleurotus sajor-caju, Mycol. Res., 2004, 108, 913-918. CrossrefGoogle Scholar

  • [139] Cristóvão R.O., Tavares A.P.M., Ferreira L.A., Loureiro J.M., Boaventura R.A.R., Macedo E.A., Modeling the discoloration of a mixture of reactive textile dyes by commercial laccase, Bioresour. Technol., 2009, 100, 1094-1099. CrossrefGoogle Scholar

  • [140] Cristóvão R.O., Tavares A.P.M., Ribeiro A.S., Loureiro J.M., Boaventura R.A.R., Macedo E.A., Kinetic modelling and simulation of laccase catalyzed degradation of reactive textile dyes, Bioresour. Technol., 2008, 99, 4768-4774. CrossrefGoogle Scholar

  • [141] Enayatzamir K., Tabandeh F., Yakhchali B., Alikhani H.A., Rodríguez Couto S., Assessment of the joint effect of laccase and cellobiose dehydrogenase on the decolouration of different synthetic dyes, J. Hazard. Mater., 2009, 169, 176-181. Google Scholar

  • [142] Fu Y., Viraraghavan T., Fungal decolorization of dye wastewaters: a review, Bioresour. Technol., 2001, 79, 251-262. CrossrefGoogle Scholar

  • [143] Grassi E., Scodeller P., Filiel N., Carballo R., Levin L., Potential of Trametes trogii culture fluids and its purified laccase for the decolorization of different types of recalcitrant dyes without the addition of redox mediators, Int. Biodeterior. Biodegrad., 2011, 65, 635-643. CrossrefGoogle Scholar

  • [144] Kuddus M., Joseph B., Wasudev Ramteke P., Production of laccase from newly isolated Pseudomonas putida and its application in bioremediation of synthetic dyes and industrial effluents, Biocatalysis and Agricultural Biotechnology, 2013, 2, 333-338. Google Scholar

  • [145] Khouni I., Marrot B., Moulin P., Amar R.B., Decolourization of the reconstituted textile effluent by different process treatments: Enzymatic catalysis, coagulation/flocculation and nanofiltration processes, Desalination, 2011, 268, 27-37. Google Scholar

  • [146] Moreira S., Milagres A.M.F., Mussatto S.I., Reactive dyes and textile effluent decolorization by a mediator system of salt-tolerant laccase from Peniophora cinerea, Sep. Purif. Technol., 2014, 135, 183-189. Google Scholar

  • [147] Robinson T., McMullan G., Marchant R., Nigam P., Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative, Bioresour. Technol., 2001, 77, 247-255. CrossrefGoogle Scholar

  • [148] Rodríguez E., Pickard M.A., Vazquez-Duhalt R., Industrial Dye Decolorization by Laccases from Ligninolytic Fungi, Curr. Microbiol., 1999, 38, 27-32. CrossrefGoogle Scholar

  • [149] Rodríguez Couto S., Toca Herrera J.L., Industrial and biotechnological applications of laccases: A review, Biotechnol. Adv., 2006, 24, 500-513. CrossrefGoogle Scholar

  • [150] Wang T.-N., Lu L., Wang J.-Y., Xu T.-F., Li J., Zhao M., Enhanced expression of an industry applicable CotA laccase from Bacillus subtilis in Pichia pastoris by non-repressing carbon sources together with pH adjustment: Recombinant enzyme characterization and dye decolorization, Process Biochem., 2015, 50, 97-103. CrossrefGoogle Scholar

  • [151] Wells A., Teria M., Eve T., Green oxidations with laccasemediator systems, Biochem. Soc. Trans., 2006, 34, 304-308. CrossrefGoogle Scholar

  • [152] Wong Y., Yu J., Laccase-catalyzed decolorization of synthetic dyes, Water Res., 1999, 33, 3512-3520. CrossrefGoogle Scholar

  • [153] Zhang M., Wu F., Wei Z., Xiao Y., Gong W., Characterization and decolorization ability of a laccase from Panus rudis, Enzyme and Microbial Technology, 2006, 39, 92-97. Google Scholar

  • [154] Lu L., Zhao M., Wang T.-N., Zhao L.-Y., Du M.-H., Li T.-L., Li D.-B., Characterization and dye decolorization ability of an alkaline resistant and organic solvents tolerant laccase from Bacillus licheniformis LS04, Bioresour. Technol., 2012, 115, 35-40. CrossrefGoogle Scholar

  • [155] Zhu M.-J., Du F., Zhang G.-Q., Wang H.-X., Ng T.-B., Purification a laccase exhibiting dye decolorizing ability from an edible mushroom Russula virescens, Int. Biodeterior. Biodegrad., 2013, 82, 33-39. CrossrefGoogle Scholar

  • [156] Zilly A., da Silva Coelho-Moreira J., Bracht A., Marques de Souza C.G., Carvajal A.E., Koehnlein E.A., Peralta R.M., Influence of NaCl and Na2SO4 on the kinetics and dye decolorization ability of crude laccase from Ganoderma lucidum, Int. Biodeterior. Biodegrad., 2011, 65, 340-344. Google Scholar

  • [157] Liu W., Chao Y., Yang X., Bao H., Qian S., Biodecolorization of azo, anthraquinonic and triphenylmethane dyes by white-rot fungi and a laccase-secreting engineered strain J. Ind. Microbiol. Biotechnol., 2004, 31, 127-132. CrossrefGoogle Scholar

  • [158] Chagas E.P., Durrant L.R., Decolorization of azo dyes by Phanerochaete chrysosporium and Pleurotus sajorcaju, Enzyme and Microbial Technology, 2001, 29, 473-477. Google Scholar

  • [159] Salony, Mishra S., Bisaria V.S., Production and characterization of laccase from Cyathus bulleri and its use in decolourization of recalcitrant textile dyes, Applied Microbiology and Biotechnology, 2006, 71, 646-653. Google Scholar

  • [160] Chivukula M., Renganathan V., Phenolic Azo Dye Oxidation by Laccase from Pyricularia oryzae, Appl. Environ. Microbiol., 1995, 61, 4374-4377. Google Scholar

  • [161] Pereira L., Coelho A.V., Viegas C.A., Santos M.M.C.d., Robalo M.P., Martins L.O., Enzymatic biotransformation of the azo dye Sudan Orange G with bacterial CotA-laccase, Journal of Biotechnology, 2009, 139, 68-77. Google Scholar

  • [162] Zille A., Górnacka B., Rehorek A., Cavaco-Paulo A., Degradation of Azo Dyes by Trametes villosa Laccase over Long Periods of Oxidative Conditions, Appl. Environ. Microbiol., 2005, 71, 6711-6718. CrossrefGoogle Scholar

  • [163] Kosower E.M., Monosubstituted diazenes (diimides). Surprising intermediates, Acc. Chem. Res., 1971, 4, 193-198. CrossrefGoogle Scholar

  • [164] Telke A., Kadam A., Jagtap S., Jadhav J., Govindwar S., Biochemical characterization and potential for textile dye degradation of blue laccase from Aspergillus ochraceus NCIM-1146, Biotechnol. Bioprocess Eng., 2010, 15, 696-703. Google Scholar

  • [165] Mishra A., Kumar S., Kumar Pandey A., Laccase production and simultaneous decolorization of synthetic dyes in unique inexpensive medium by new isolates of white rot fungus, International Biodeterioration and Biodegradation, 2011, 65, 487-493. CrossrefGoogle Scholar

  • [166] Goszczynski S., Paszczynski A., Pasti-Grigsby M.B., Crawford R.L., Crawford D.L., New pathway for degradation of sulfonated azo dyes by microbial peroxidases of Phanerochaete chrysosporium and Streptomyces chromofuscus, J. Bacteriol., 1994, 176, 1339-1347. Google Scholar

  • [167] Emmert Iii F.L., Thomas J., Hon B., Gengenbach A.J., Metalloporphyrin catalyzed oxidation of methyl yellow and related azo compounds, Inorg. Chim. Acta, 2008, 361, 2243-2251. Google Scholar

  • [168] Stolz A., Basic and applied aspects in the microbial degradation of azo dyes, Applied Microbiology and Biotechnology, 2001, 56, 69-80. Google Scholar

  • [169] Liu L., Zhang J., Tan Y., Jiang Y., Hu M., Li S., Zhai Q., Rapid decolorization of anthraquinone and triphenylmethane dye using chloroperoxidase: Catalytic mechanism, analysis of products and degradation route, Chem. Eng. J., 2014, 244, 9-18. Google Scholar

  • [170] Arrieta-Baez D., Roman R., Vazquez-Duhalt R., Jiménez- Estrada M., Peroxidase-mediated transformation of hydroxy-9,10-anthraquinones, Phytochemistry, 2002, 60, 567-572. Google Scholar

  • [171] Zucca P., Vinci C., Sollai F., Rescigno A., Sanjust E., Degradation of Alizarin Red S under mild experimental conditions by immobilized 5,10,15,20-tetrakis(4-sulfonatophenyl) porphine-Mn(III) as a biomimetic peroxidase-like catalyst, J. Mol. Catal. A: Chem., 2008, 288, 97-102. Google Scholar

  • [172] Guan Z.B., Song C.M., Zhang N., Zhou W., Xu C.W., Zhou L.X., Zhao H., Cai Y.J., Liao X.R., Overexpression, characterization, and dye-decolorizing ability of a thermostable, pH-stable, and organic solvent-tolerant laccase from Bacillus pumilus W3, Journal of Molecular Catalysis B: Enzymatic, 2014, 101, 1-6. Google Scholar

  • [173] Nagashima N., Ishikawa T., Takagishi T., Bleaching of dyes with Laccases, Sen’i Gakkaishi, 2013, 69, 183-190. Google Scholar

  • [174] Sarnthima R., Khammuang S., Laccase production by Pycnoporus sanguineus grown under liquid state culture and its potential in remazol brilliant blue R decolorization, International Journal of Agriculture and Biology, 2013, 15, 215-222. Google Scholar

  • [175] Faraco V., Pezzella C., Giardina P., Piscitelli A., Vanhulle S., Sannia G., Decolourization of textile dyes by the white-rot fungi Phanerochaete chrysosporium and Pleurotus ostreatus, J. Chem. Technol. Biotechnol., 2009, 84, 414-419. CrossrefGoogle Scholar

  • [176] Guillen F., Gomez-Toribio V., Martinez M.J., Martinez A.T., Production of hydroxyl radical by the synergistic action of fungal laccase and aryl alcohol oxidase, Arch. Biochem. Biophys., 2000, 383, 142-147. Google Scholar

  • [177] Li Q., Ge L., Cai J., Pei J., Xie J., Zhao L., Comparison of two laccases from Trametes versicolor for application in the decolorization of dyes, J. Microbiol. Biotechnol., 2014, 24, 545-555. CrossrefGoogle Scholar

  • [178] Hsu C.A., Wen T.N., Su Y.C., Jiang Z.B., Chen C.W., Shyur L.F., Biological degradation of anthroquinone and azo dyes by a novel laccase from Lentinus sp, Environ. Sci. Technol., 2012, 46, 5109-5117. CrossrefGoogle Scholar

  • [179] Tychanowicz G.K., Zilly A., De Souza C.G.M., Peralta R.M., Decolourisation of industrial dyes by solid-state cultures of Pleurotus pulmonarius, Process Biochem., 2004, 39, 855-859. CrossrefGoogle Scholar

  • [180] Galai S., Limam F., Marzouki M.N., A new Stenotrophomonas maltophilia strain producing laccase. use in decolorization of synthetics dyes, Appl. Biochem. Biotechnol., 2009, 158, 416-431. Google Scholar

  • [181] Ahmed Abedin R.M., El Hanafy A.A., El-Latif S.A., El-Assar S.A., Fadel M.S., Ligninolytic oxidative system of fungal Egyptian isolates and their applications in the decolorization of industrial dyes, Biotechnology and Biotechnological Equipment, 2013, 27, 4269-4275. Google Scholar

  • [182] Levin L., Diorio L., Grassi E., Forchiassin F., Grape stalks as substrate for white rot fungi, lignocellulolytic enzyme production and dye decolorization, Rev. Argent. Microbiol., 2012, 44, 105-112. Google Scholar

  • [183] Grassi E., Pildain M.B., Levin L., Carmaran C., Studies in diatrypaceae: The new species Eutypa microasca and investigation of ligninolytic enzyme production, Sydowia, 2014, 66, 99-114. Google Scholar

  • [184] Zucca P., Sollai F., Garau A., Rescigno A., Sanjust E., Fe(III)- 5,10,15,20-tetrakis(pentafluorophenyl)porphine supported on pyridyl-functionalized, crosslinked poly(vinyl alcohol) as a biomimetic versatile-peroxidase-like catalyst, J. Mol. Catal. A: Chem., 2009, 306, 89-96. Google Scholar

  • [185] Archibald F.S., A new assay for lignin-type peroxidases employing the dye Azure B, Applied and Environment Microbiology, 1992, 58, 3110-3116. Google Scholar

  • [186] Zucca P., Vinci C., Rescigno A., Dumitriu E., Sanjust E., Is the bleaching of phenosafranine by hydrogen peroxide oxidation catalyzed by silica-supported 5,10,15,20-tetrakis- (sulfonatophenyl)porphine-Mn(III) really biomimetic?, J. Mol. Catal. A: Chem., 2010, 321, 27-33. Google Scholar

  • [187] Bao S., Teng Z., Ding S., Heterologous expression and characterization of a novel laccase isoenzyme with dyes decolorization potential from Coprinus comatus, Mol. Biol. Rep., 2013, 40, 1927-1936. CrossrefGoogle Scholar

  • [188] Tian Y.S., Xu H., Peng R.H., Yao Q.H., Wang R.T., Heterologous expression and characterization of laccase 2 from Coprinopsis cinerea capable of decolourizing different recalcitrant dyes, Biotechnology and Biotechnological Equipment, 2014, 28, 248-258. Google Scholar

  • [189] Balan K., Pratheebaa P., Palvannan T., Application of the laccase, produced on coconut flesh by Pleurotus florida for dye decolorization, Journal of Water Chemistry and Technology, 2013, 35, 273-280. Google Scholar

  • [190] Jiang M., Ten Z., Ding S., Decolorization of synthetic dyes by crude and purified laccases from Coprinus comatus grown under different cultures: The role of major isoenzyme in dyes decolorization, Appl. Biochem. Biotechnol., 2013, 169, 660-672. Google Scholar

  • [191] Kunjadia P.D., Patel F.D., Nagee A., Mukhopadhyaya P.N., Dave G.S., Crystal violet (Triphenylmethane dye) decolorization potential of Pleurotus ostreatus (MTCC 142), BioResources, 2012, 7, 1189-1199. Google Scholar

  • [192] Vasdev K., Kuhad R.C., Saxena R.K., Decolorization of triphenylmethane dyes by the bird’s nest fungus Cyathus bulleri, Curr. Microbiol., 1995, 30, 269-272. CrossrefGoogle Scholar

  • [193] Casas N., Parella T., Vicent T., Caminal G., Sarrà M., Metabolites from the biodegradation of triphenylmethane dyes by Trametes versicolor or laccase, Chemosphere, 2009, 75, 1344-1349. CrossrefGoogle Scholar

  • [194] Parshetti G.K., Kalme S.D., Gomare S.S., Govindwar S.P., Biodegradation of Reactive blue-25 by Aspergillus ochraceus NCIM-1146, Bioresour. Technol., 2007, 98, 3638-3642. Google Scholar

  • [195] Conneely A., Smyth W.F., McMullan G., Study of the white-rot fungal degradation of selected phthalocyanine dyes by capillary electrophoresis and liquid chromatography, Anal. Chim. Acta, 2002, 451, 259-270. Google Scholar

  • [196] Chhabra M., Mishra S., Sreekrishnan T.R., Combination of chemical and enzymatic treatment for efficient decolorization/ degradation of textile effluent: High operational stability of the continuous process, Biochem. Eng. J., 2015, 93, 17-24. CrossrefGoogle Scholar

  • [197] Galai S., Korri-Youssoufi H., Marzouki M.N., Characterization of yellow bacterial laccase SmLac/role of redox mediators in azo dye decolorization, J. Chem. Technol. Biotechnol., 2014, 89, 1741-1750. CrossrefGoogle Scholar

  • [198] Kenzom T., Srivastava P., Mishra S., Structural insights into 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)- mediated degradation of reactive blue 21 by engineered Cyathus bulleri laccase and characterization of degradation products, Appl. Environ. Microbiol., 2014, 80, 7484-7495. Google Scholar

  • [199] Gioia L., Manta C., Ovsejevi K., Burgueño J., Menéndez P., Rodriguez-Couto S., Enhancing laccase production by a newly-isolated strain of Pycnoporus sanguineus with high potential for dye decolouration, RSC Advances, 2014, 4, 34096-34103. Google Scholar

  • [200] Rosado T., Bernardo P., Koci K., Coelho A.V., Robalo M.P., Martins L.O., Methyl syringate: An efficient phenolic mediator for bacterial and fungal laccases, Bioresour. Technol., 2012, 124, 371-378. CrossrefGoogle Scholar

  • [201] D’Alfonso C., Lanzalunga O., Lapi A., Vadalà R., Comparing the catalytic efficiency of ring substituted 1- hydroxybenzotriazoles as laccase mediators, Tetrahedron, 2014, 70, 3049-3055. Google Scholar

  • [202] Knutson K., Ragauskas A., Laccase-mediator biobleaching applied to a direct yellow dyed paper, Biotechnol. Prog., 2004, 20, 1893-1896. CrossrefGoogle Scholar

  • [203] Moldes D., Sanromán M.Á., Amelioration of the ability to decolorize dyes by laccase: Relationship between redox mediators and laccase isoenzymes in Trametes versicolor, World Journal of Microbiology and Biotechnology, 2006, 22, 1197-1204. Google Scholar

  • [204] Tavares A.P.M., Cristóvão R.O., Loureiro J.M., Boaventura R.A.R., Macedo E.A., Optimisation of reactive textile dyes degradation by laccase-mediator system, J. Chem. Technol. Biotechnol., 2008, 83, 1609-1615. CrossrefGoogle Scholar

  • [205] Khlifi R., Belbahri L., Woodward S., Ellouz M., Dhouib A., Sayadi S., Mechichi T., Decolourization and detoxification of textile industry wastewater by the laccase-mediator system, J. Hazard. Mater., 2010, 175, 802-808. Google Scholar

  • [206] Benzina O., Daâssi D., Zouari-Mechichi H., Frikha F., Woodward S., Belbahri L., Rodriguez-Couto S., Mechichi T., Decolorization and detoxification of two textile industry effluents by the laccase/1-hydroxybenzotriazole system, Environmental Science and Pollution Research, 2013, 20, 5177-5187. Google Scholar

  • [207] Bernini R., Crisante F., Gentili P., Menta S., Morana F., Pierini M., Unexpected different chemoselectivity in the aerobic oxidation of methylated planar catechin and bent epicatechin derivatives catalysed by the Trametes villosa laccase/1- hydroxybenzotriazole system, RSC Advances, 2014, 4, 8183-8190. Google Scholar

  • [208] Zucca P., Sanjust E., Inorganic materials as supports for covalent enzyme immobilization: Methods and mechanisms, Molecules, 2014, 19, 14139-14194. CrossrefGoogle Scholar

  • [209] Ba S., Arsenault A., Hassani T., Jones J.P., Cabana H., Laccase immobilization and insolubilization: From fundamentals to applications for the elimination of emerging contaminants in wastewater treatment, Crit. Rev. Biotechnol., 2013, 33, 404-418. CrossrefGoogle Scholar

  • [210] Durán N., Rosa M.A., D’Annibale A., Gianfreda L., Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: A review, Enzyme and Microbial Technology, 2002, 31, 907-931. Google Scholar

  • [211] Gasser C.A., Ammann E.M., Shahgaldian P., Corvini P.F.X., Laccases to take on the challenge of emerging organic contaminants in wastewater, Applied Microbiology and Biotechnology, 2014, 98, 9931-9952. Google Scholar

  • [212] Husain Q., Potential applications of the oxidoreductive enzymes in the decolorization and detoxification of textile and other synthetic dyes from polluted water: A review, Crit. Rev. Biotechnol., 2006, 26, 201-221. CrossrefGoogle Scholar

  • [213] Viswanath B., Rajesh B., Janardhan A., Kumar A.P., Narasimha G., Fungal laccases and their applications in bioremediation, Enzyme Research, 2014, 2014. Google Scholar

  • [214] Santos J.C.S.d., Barbosa O., Ortiz C., Berenguer-Murcia A., Rodrigues R.C., Fernandez-Lafuente R., Importance of the Support Properties for Immobilization or Purification of Enzymes, ChemCatChem, 2015, n/a-n/a. Google Scholar

  • [215] Salis A., Pisano M., Monduzzi M., Solinas V., Sanjust E., Laccase from Pleurotus sajor-caju on functionalised SBA-15 mesoporous silica: Immobilisation and use for the oxidation of phenolic compounds, Journal of Molecular Catalysis B: Enzymatic, 2009, 58, 175-180. CrossrefGoogle Scholar

  • [216] Bayramoglu G., Yilmaz M., Arica M.Y., Preparation and characterization of epoxy-functionalized magnetic chitosan beads: Laccase immobilized for degradation of reactive dyes, Bioprocess Biosyst. Eng., 2010, 33, 439-448. Google Scholar

  • [217] Cristóvão R.O., Silvério S.C., Tavares A.P.M., Brígida A.I.S., Loureiro J.M., Boaventura R.A.R., Macedo E.A., Coelho M.A.Z., Green coconut fiber: A novel carrier for the immobilization of commercial laccase by covalent attachment for textile dyes decolourization, World Journal of Microbiology and Biotechnology, 2012, 28, 2827-2838. Google Scholar

  • [218] Lin J., Fan L., Miao R., Le X., Chen S., Zhou X., Enhancing catalytic performance of laccase via immobilization on chitosan/CeO2 microspheres, Int. J. Biol. Macromol., 2015, 78, 1-8. Google Scholar

  • [219] Mahmoodi N.M., Arabloo M., Abdi J., Laccase immobilized manganese ferrite nanoparticle: Synthesis and LSSVM intelligent modeling of decolorization, Water Res., 2014, 67, 216-226. CrossrefGoogle Scholar

  • [220] Mohajershojaei K., Mahmoodi N.M., Khosravi A., Immobilization of laccase enzyme onto titania nanoparticle and decolorization of dyes from single and binary systems, Biotechnol. Bioprocess Eng., 2015, 20, 109-116. CrossrefGoogle Scholar

  • [221] Uygun M., Preparation of laccase immobilized cryogels and usage for decolorization, Journal of Chemistry, 2013. Google Scholar

  • [222] Zhang P., Wang Q., Zhang J., Li G., Wei Q., Preparation of amidoxime-modified polyacrylonitrile nanofibers immobilized with laccase for dye degradation, Fibers and Polymers, 2014, 15, 30-34. CrossrefGoogle Scholar

  • [223] Zhang X., Pan B., Wu B., Zhang W., Lv L., A new polymerbased laccase for decolorization of AO7: Long-term storage and mediator reuse, Bioresour. Technol., 2014, 164, 248-253. Google Scholar

  • [224] Amezquita-Garcia H.J., Razo-Flores E., Cervantes F.J., Rangel-Mendez J.R., Anchorage of anthraquinone molecules onto activated carbon fibers to enhance the reduction of 4-nitrophenol, J. Chem. Technol. Biotechnol., 2014. Google Scholar

  • [225] Mate D.M., Alcalde M., Laccase engineering: From rational design to directed evolution, Biotechnol. Adv., 2015, 33, 25-40. CrossrefGoogle Scholar

About the article

Received: 2015-07-28

Accepted: 2015-10-05

Published Online: 2016-01-20


Citation Information: Biocatalysis, Volume 1, Issue 1, Pages 82–108, ISSN (Online) 2353-1746, DOI: https://doi.org/10.1515/boca-2015-0007.

Export Citation

© 2015 Paolo Zucca, et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Gianmarco Cocco, Andrea Cocco, Francesca Sollai, Enrico Sanjust, and Paolo Zucca
International Journal of Molecular Sciences, 2017, Volume 18, Number 12, Page 2553
[2]
Youxun Liu, Yuanyuan Geng, Mingyang Yan, and Juan Huang
Molecules, 2017, Volume 22, Number 6, Page 920
[3]
Diana M. Mate and Miguel Alcalde
Microbial Biotechnology, 2016
[4]
Martina Loi, Francesca Fanelli, Paolo Zucca, Vania Liuzzi, Laura Quintieri, Maria Cimmarusti, Linda Monaci, Miriam Haidukowski, Antonio Logrieco, Enrico Sanjust, and Giuseppina Mulè
Toxins, 2016, Volume 8, Number 9, Page 245
[5]
Youxun Liu, Mingyang Yan, Yuanyuan Geng, and Juan Huang
Applied Sciences, 2016, Volume 6, Number 8, Page 232
[6]
Paolo Zucca, Cláudia Neves, Mário Simões, Maria Neves, Gianmarco Cocco, and Enrico Sanjust
Molecules, 2016, Volume 21, Number 8, Page 964

Comments (0)

Please log in or register to comment.
Log in