Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biocatalysis

1 Issue per year

Open Access
Online
ISSN
2353-1746
See all formats and pricing
More options …

Enzymatic microreactors in biocatalysis: history, features, and future perspectives

Enzo Laurenti / Ardson dos Santos Vianna Jr.
  • Corresponding author
  • Department of Chemical Engineering, University of São Paulo, 05508010 - São Paulo, SP - Brasil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-02-05 | DOI: https://doi.org/10.1515/boca-2015-0008

Abstract

Microfluidic reaction devices are a very promising technology for chemical and biochemical processes. In microreactors, the micro dimensions, coupled with a high surface area/volume ratio, permit rapid heat exchange and mass transfer, resulting in higher reaction yields and reaction rates than in conventional reactors. Moreover, the lower energy consumption and easier separation of products permit these systems to have a lower environmental impact compared to macroscale, conventional reactors. Due to these benefits, the use of microreactors is increasing in the biocatalysis field, both by using enzymes in solution and their immobilized counterparts. Following an introduction to the most common applications of microreactors in chemical processes, a broad overview will be given of the latest applications in biocatalytic processes performed in microreactors with free or immobilized enzymes. In particular, attention is given to the nature of the materials used as a support for the enzymes and the strategies employed for their immobilization. Mathematical and engineering aspects concerning fluid dynamics in microreactors were also taken into account as fundamental factors for the optimization of these systems.

Keywords: Microreactor; microfluidic reactor; enzyme; immobilization; biocatalysis

References

  • [1] Mosesman M. A., In situ x-ray diffraction studies of heterogeneous reactions, J. Am. Chem. Soc., 1951, 73, 5635-5639. CrossrefGoogle Scholar

  • [2] Wohlgemuth R., Plazl I., Žnidaršič-Plazl P., Gernaey K. V., Woodley J. M., Microscale technology and biocatalytic processes: opportunities and challenges for synthesis, Trends Biotechnol., 2015, 33, 302-314. CrossrefGoogle Scholar

  • [3] Hessel V., Kralisch D., Kockmann N., Noël T., Wang Q., Novel process windows for enabling, accelerating, and uplifting flow chemistry, ChemSusChem, 2013, 6, 746-789. CrossrefGoogle Scholar

  • [4] Wiles C., Watts P., Continuous flow reactors, a tool for the modern synthetic chemist, Eur. J. Org. Chem., 2008, 1655-1671. CrossrefGoogle Scholar

  • [5] Frost C. G., Mutton L., Heterogeneous catalytic synthesis using microreactor technology, Green Chem., 2010, 12, 1687-1703. CrossrefGoogle Scholar

  • [6] McMullen J. P., Jensen K. F., Integrated Microreactors for Reaction Automation: New Approaches to Reaction Development, Annu. Rev. Anal. Chem., 2010, 3, 19-42. CrossrefGoogle Scholar

  • [7] Brandner J. J., Microfabrication in metals, ceramics and polymers, Russ. J. Gen. Chem., 2012, 82, 2025-2033. CrossrefGoogle Scholar

  • [8] Schönfeld H., Hunger K., Cecilia R., Kunz U., Enhanced mass transfer using a novel polymer/carrier microreactor, Chem. Eng. J., 2004, 101, 455-463. CrossrefGoogle Scholar

  • [9] Watts P., Haswell S. J., The application of micro reactors for organic synthesis, Chem. Soc. Rev., 2005, 34, 235-246. CrossrefGoogle Scholar

  • [10] Sudarsan A. P., Ugaz V. M., Fluid mixing in planar spiral microchannels, Lab. Chip., 2006, 6, 74-82. CrossrefGoogle Scholar

  • [11] Bošković D., Loebbecke S., Gross G. A., Koehler J. M., Residence Time Distribution Studies in Microfluidic Mixing Structures, Chem. Eng. Technol., 2011, 34, 361-370. CrossrefGoogle Scholar

  • [12] Hessel V., Löwe H., Schönfeld F., Micromixers - A review on passive and active mixing principles, Chem. Eng. Sci., 2005, 60, 2479-2501. CrossrefGoogle Scholar

  • [13] Aoki N., Umei R., Yoshida A., Mae K., Design method for micromixers considering influence of channel confluence and bend on diffusion length, Chem. Eng. J., 2011, 167, 643-650. Google Scholar

  • [14] Marques M. P. C., Fernandes P., Microfluidic devices: Useful tools for bioprocess intensification, Molecules, 2011, 16, 8368-8401. CrossrefGoogle Scholar

  • [15] Hartman R. L., McMullen J. P., Jensen K. F., Deciding Whether To Go with the Flow: Evaluating the Merits of Flow Reactors for Synthesis, Angew. Chem. Int. Edit., 2011, 50, 7502-7519. CrossrefGoogle Scholar

  • [16] Fukuyama T., Rahman M. T., Kamata N., Ryu I., Radical carbonylations using a continuous microflow system, Beilstein J. Org. Chem., 2009, 5, 34. Google Scholar

  • [17] Fukuyama T., Totoki T., Ryu I., Carbonylation in microflow: Close encounters of CO and reactive species, Green Chem., 2014, 16, 2042-2050. CrossrefGoogle Scholar

  • [18] Yoshida J., Flash chemistry: flow microreactor synthesis based on high-resolution reaction time control, Chem. Rec., 2010, 10, 332-341. CrossrefGoogle Scholar

  • [19] Roberge D. M., Ducry L., Bieler N., Cretton P., Zimmermann B., Microreactor Technology: A Revolution for the Fine Chemical and Pharmaceutical Industries?, Chem. Eng. Technol., 2005, 28, 318-323. CrossrefGoogle Scholar

  • [20] Kobayashi J., Mori Y., Okamoto K., Akiyama R., Ueno M., Kitamori T., Kobayashi S., A Microfluidic Device for Conducting Gas-Liquid-Solid Hydrogenation Reactions, Science, 2004, 304, 1305-1308. Google Scholar

  • [21] Aoki N., Hasebe S., Mae K., Mixing in microreactors: effectiveness of lamination segments as a form of feed on product distribution for multiple reactions, Chem. Eng. J., 2004, 101, 323-331. CrossrefGoogle Scholar

  • [22] Bothe D., Stemich C., Warnecke H.-J., Computation of scales and quality of mixing in a T-shaped microreactor, Comp. Chem. Eng., 2008, 32, 108-114. CrossrefGoogle Scholar

  • [23] Amador C., Wenn D., Shaw J., Gavriilidis A., Angeli P., Design of a mesh microreactor for even flow distribution and narrow residence time distribution, Chem. Eng. J., 2008, 135, Supplement 1, S259-S269. Google Scholar

  • [24] Kumaraguru T., Babita P., Sheelu G., Lavanya K., Fadnavis N. W., Synthesis of Enantiomerically Pure 4-Hydroxy-2-cyclopentenones, Org. Process Res. Dev., 2013, 17, 1526-1530. CrossrefGoogle Scholar

  • [25] Tomida Y., Nagaki A., Yoshida J.-i., Asymmetric Carbolithiation of Conjugated Enynes: A Flow Microreactor Enables the Use of Configurationally Unstable Intermediates before They Epimerize, J. Am. Chem. Soc., 2011, 133, 3744-3747. Google Scholar

  • [26] Amii H., Nagaki A., Yoshida J. I., Flow microreactor synthesis in organo-fluorine chemistry, Beilstein J. Org. Chem., 2013, 9, 2793-2802. Google Scholar

  • [27] Chambers R. D., Fox M. A., Sandford G., Elemental fluorine. Part 18. Selective direct fluorination of 1,3-ketoesters and 1,3-diketones using gas/liquid microreactor technology, Lab Chip, 2005, 5, 1132-1139. Google Scholar

  • [28] Chun J. H., Lu S., Lee Y. S., Pike V. W., Fast and high-yield microreactor syntheses of ortho-substituted Google Scholar

  • [(18)F]fluoroarenes from reactions of Google Scholar

  • [(18)F]fluoride ion with diaryliodonium salts, J Org Chem, 2010, 75, 3332-3338. Google Scholar

  • [29] McMullen J. P., Stone M. T., Buchwald S. L., Jensen K. F., An integrated microreactor system for self-optimization of a Heck reaction: from micro- to mesoscale flow systems, Angew Chem Int. Ed., 2010, 49, 7076-7080. CrossrefGoogle Scholar

  • [30] Flogel O., Codee J. D., Seebach D., Seeberger P. H., Microreactor synthesis of beta-peptides, Angew. Chem. Int. Ed., 2006, 45, 7000-7003. CrossrefGoogle Scholar

  • [31] Giovine A., Musio B., Degennaro L., Falcicchio A., Nagaki A., Yoshida J., Luisi R., Synthesis of 1,2,3,4-tetrahydroisoquinolines by microreactor-mediated thermal isomerization of laterally lithiated arylaziridines, Chem. Eur. J., 2013, 19, 1872-1876. Google Scholar

  • [32] Garcia-Egido E., Wong S. Y., Warrington B. H., A Hantzsch synthesis of 2-aminothiazoles performed in a heated microreactor system, Lab Chip, 2002, 2, 31-33. CrossrefGoogle Scholar

  • [33] Fukuyama T., Mukai Y., Ryu I., Koch-Haaf reaction of adamantanols in an acid-tolerant hastelloy-made microreactor, Beilstein J Org Chem, 2011, 7, 1288-1293. CrossrefGoogle Scholar

  • [34] Steinbacher J. L., McQuade D. T., Polymer chemistry in flow: New polymers, beads, capsules, and fibers, J. Polym. Sci. Pol. Chem., 2006, 44, 6505-6533. CrossrefGoogle Scholar

  • [35] Kirschning A., Solodenko W., Mennecke K., Combining enabling techniques in organic synthesis: Continuous flow processes with heterogenized catalysts, Chem. Eur. J., 2006, 12, 5972-5990. CrossrefGoogle Scholar

  • [36] Bally F., Serra C. A., Brochon C., Hadziioannou G., Synthesis of branched polymers under continuous-flow microprocess: An improvement of the control of macromolecular architectures, Macromol. Rapid Comm., 2011, 32, 1820-1825. CrossrefGoogle Scholar

  • [37] Lobry E., Jasinski F., Penconi M., Chemtob A., Croutxé-Barghorn C., Oliveros E., Braun A. M., Criqui A., Continuous-flow synthesis of polymer nanoparticles in a microreactor via miniemulsion photopolymerization, RSC Adv., 2014, 4, 43756-43759. Google Scholar

  • [38] Su Y., Straathof N. J. W., Hessel V., Noël T., Photochemical transformations accelerated in continuous-flow reactors: Basic concepts and applications, Chem. Eur. J., 2014, 20, 10562-10589. CrossrefGoogle Scholar

  • [39] Kolb G., Review: Microstructured reactors for distributed and renewable production of fuels and electrical energy, Chem. Eng. Proc. Process Intensif., 2013, 65, 1-44. CrossrefGoogle Scholar

  • [40] Ajmera S. K., Losey M. W., Jensen K. F., Schmidt M. A., Microfabricated packed-bed reactor for phosgene synthesis, AIChE J., 2001, 47, 1639-1647. CrossrefGoogle Scholar

  • [41] Knapkiewicz P., Skowerski K., Jaskólska D. E., Barbasiewicz M., Olszewski T. K., Nitration Under Continuous Flow Conditions: Convenient Synthesis of 2-Isopropoxy-5-nitrobenzaldehyde, an Important Building Block in the Preparation of Nitro- Substituted Hoveyda–Grubbs Metathesis Catalyst, Org. Process Res. Dev., 2012, 16, 1430-1435. Google Scholar

  • [42] Junior I. I., Flores M. C., Sutili F. K., Leite S. G. F., de M. Miranda L. S., Leal I. C. R., de Souza R. O. M. A., Lipase-Catalyzed Monostearin Synthesis under Continuous Flow Conditions, Org. Process Res. Dev., 2012, 16, 1098-1101. CrossrefGoogle Scholar

  • [43] Hartman R. L., Jensen K. F., Microchemical systems for continuous-flow synthesis, Lab Chip, 2009, 9, 2495-2507. CrossrefGoogle Scholar

  • [44] Commenge J. M., Falk L., Corriou J. P., Matlosz M., Analysis of microstructured reactor characteristics for process miniaturization and intensification, Chem. Eng. Technol., 2005, 28, 446-458. CrossrefGoogle Scholar

  • [45] Metwally H. M., Manglik R. M., Enhanced heat transfer due to curvature-induced lateral vortices in laminar flows in sinusoidal corrugated-plate channels, Int. J. Heat Mass Transfer, 2004, 47, 2283-2292. Google Scholar

  • [46] Bird R. B., Stewart, W.E., Lightfoot, E.N., Transport Phenomena, Revised 2nd Edition, 2007, John Wiley & Sons. Google Scholar

  • [47] Burns J. R., Ramshaw C., Development of a microreactor for chemical production, Chem. Eng. Res. Des., 1999, 77, 206-211. CrossrefGoogle Scholar

  • [48] Gunther A., Jensen K. F., Multiphase microfluidics: from flow characteristics to chemical and materials synthesis, Lab Chip, 2006, 6, 1487-1503. CrossrefGoogle Scholar

  • [49] Danckwerts P. V., Continuous flow systems: Distribution of residence times, Chem. Eng. Sci., 1953, 2, 1-13. CrossrefGoogle Scholar

  • [50] Fogler H. S., Elements of Chemical Reaction Engineering. 2005: Prentice Hall. Google Scholar

  • [51] Trachsel F., Günther A., Khan S., Jensen K. F., Measurement of residence time distribution in microfluidic systems, Chem. Eng. Sci., 2005, 60, 5729-5737. CrossrefGoogle Scholar

  • [52] Lohse S., Kohnen B. T., Janasek D., Dittrich P. S., Franzke J., Agar D. W., A novel method for determining residence time distribution in intricately structured microreactors, Lab Chip, 2008, 8, 431-438. CrossrefGoogle Scholar

  • [53] Deshmukh S. R., Mhadeshwar A. B., Vlachos D. G., Microreactor Modeling for Hydrogen Production from Ammonia Decomposition on Ruthenium, Ind. Eng. Chem. Res., 2004, 43, 2986-2999. CrossrefGoogle Scholar

  • [54] Jovanovic G. N., Žnidaršič Plazl P., Sakrittichai P., Al-Khaldi K., Dechlorination of p-Chlorophenol in a Microreactor with Bimetallic Pd/Fe Catalyst, Ind. Eng. Chem. Res., 2005, 44, 5099-5106. CrossrefGoogle Scholar

  • [55] Burkle-Vitzthum V., Moulis F., Zhang J., Commenge J.-M., Schaer E., Marquaire P.-M., Annular flow microreactor: An efficient tool for kinetic studies in gas phase at very short residence times, Chem. Eng. Res. Des., 2015, 94, 611-623. CrossrefGoogle Scholar

  • [56] Purday H. F. P., An introduction to the mechanics of viscous flow; film lubrication, the flow of heat by conduction and heat transfer by convection, 1949, Dover Publications. Google Scholar

  • [57] Hardt S., Microreactors – Modeling and Simulation, in Ullmann’s Encyclopedia of Industrial Chemistry. 2011, Wiley-VCH Verlag GmbH & Co. KGaA. Google Scholar

  • [58] Tišma M., Zelić B., Vasić-Rački D., Žnidaršič-Plazl P., Plazl I., Modelling of laccase-catalyzed l-DOPA oxidation in a microreactor, Chem. Eng. J., 2009, 149, 383-388. CrossrefGoogle Scholar

  • [59] Levenspiel O., Chemical Reaction Engineering, 3rd Edition. 1998: John Wiley & Sons. Google Scholar

  • [60] Nauman E. B., Chemical Reactor Design, Optimization, and Scaleup, 4th Edition, 2008, John Wiley & Sons. Google Scholar

  • [61] Bošković D., Loebbecke S., Modelling of the residence time distribution in micromixers, Chem. Eng. J., 2008, 135, Supplement 1, S138-S146. Google Scholar

  • [62] Aubin J., Prat L., Xuereb C., Gourdon C., Effect of microchannel aspect ratio on residence time distributions and the axial dispersion coefficient, Chem. Eng. Proc. Process Intensif., 2009, 48, 554-559. CrossrefGoogle Scholar

  • [63] Schwolow S., Heikenwälder B., Abahmane L., Kockmann N., Röder T., Kinetic and Scale-up Investigations of a Michael Addition in Microreactors, Org. Process Res. Dev., 2014, 18, 1535-1544. CrossrefGoogle Scholar

  • [64] Islabão G. I. d., Pinto J. C. C. d. S., Vianna Júnior A. d. S., Technological Trends in CFD Applications, J. Technol. Manage. Innov., 2010, 5, 76-83. Google Scholar

  • [65] Yamaguchi Y., Takagi F., Yamashita K., Nakamura H., Maeda H., Sotowa K., Kusakabe K., Yamasaki Y., Morooka S., 3-D simulation and visualization of laminar flow in a microchannel with hair-pin curves, AIChE J., 2004, 50, 1530-1535. Google Scholar

  • [66] Li X., van der Steen G., van Dedem G. W. K., van der Wielen L. A. M., van Leeuwen M., van Gulik W. M., Heijnen J. J., Krommenhoek E. E., Gardeniers J. G. E., van den Berg A., Ottens M., Improving mixing in microbioreactors, Chem. Eng. Sci., 2008, 63, 3036-3046. CrossrefGoogle Scholar

  • [67] Sotowa K. I., Takagi K., Sugiyama S., Fluid flow behavior and the rate of an enzyme reaction in deep microchannel reactor under high-throughput condition, Chem. Eng. J., 2008, 135, S30-S36. Google Scholar

  • [68] Bodla V. K., Seerup R., Krühne U., Woodley J. M., Gernaey K. V., Microreactors and CFD as Tools for Biocatalysis Reactor Design: A case study, Chem. Eng. Technol., 2013, 36, 1017-1026. CrossrefGoogle Scholar

  • [69] Faires J. D., Burden R. L., Numerical Methods. 4th ed. 2012: Brooks Cole, Cengage Learning. Google Scholar

  • [70] Song H., Ismagilov R. F., Millisecond Kinetics on a Microfluidic Chip Using Nanoliters of Reagents, J.Am.Chem.Soc., 2003, 125, 14613-14619. CrossrefGoogle Scholar

  • [71] Baronas R., Ivanauskas F., Kulys J., Mathematical Modeling of Biosensors Based on an Array of Enzyme Microreactors, Sensors, 2006, 6, 453-465. CrossrefGoogle Scholar

  • [72] Pallares J., Ferré J. A., A simple model to predict mass transfer rates and kinetics of biochemical and biomedical Michaelis- Menten surface reactions, Int. J. Heat Mass Transfer, 2015, 80, 192-198. Google Scholar

  • [73] Miyazaki M., Maeda H., Microchannel enzyme reactors and their applications for processing, Trends Biotechnol., 2006, 24, 463-470. CrossrefGoogle Scholar

  • [74] Tanaka Y., Slyadnev M. N., Hibara A., Tokeshi M., Kitamori T., Non-contact photothermal control of enzyme reactions on a microchip by using a compact diode laser, J. Chromatogr. A, 2000, 894, 45-51. Google Scholar

  • [75] Slyadnev M. N., Tanaka Y., Tokeshi M., Kitamori T., Photothermal temperature control of a chemical reaction on a microchip using an infrared diode laser, Anal. Chem., 2001, 73, 4037-4044. CrossrefGoogle Scholar

  • [76] Maruyama T., Uchida J.-i., Ohkawa T., Futami T., Katayama K., Nishizawa K.-i., Sotowa K.-i., Kubota F., Kamiya N., Goto M., Enzymatic degradation of p-chlorophenol in a two-phase flow microchannel system, Lab Chip, 2003, 3, 308-312. CrossrefGoogle Scholar

  • [77] Žnidaršič-Plazl P., Plazl I., Modelling and experimental studies on lipase-catalyzed isoamyl acetate synthesis in a microreactor, Process Biochem., 2009, 44, 1115-1121. CrossrefGoogle Scholar

  • [78] Žnidaršič-Plazl P., Pohar A., Plazl I. Theoretical and experimental studies of enzyme-catalyzed isoamyl acetate synthesis with ionic liquid at the microreactor scale. in Chem. Eng. Trans., 2009, 17, 1077-1082. Google Scholar

  • [79] Čech J., Schrott W., Slouka Z., Přibyl M., Brož M., Kuncová G., Šnita D., Enzyme hydrolysis of soybean oil in a slug flow microsystem, Biochem. Eng. J., 2012, 67, 194-202. CrossrefGoogle Scholar

  • [80] Sahoo H. R., Kralj J. G., Jensen K. F., Multistep continuous-flow microchemical synthesis involving multiple reactions and separations, Angew. Chem. Int. Edit., 2007, 119, 5806-5810. CrossrefGoogle Scholar

  • [81] Hartman R. L., Naber J. R., Buchwald S. L., Jensen K. F., Multistep Microchemical Synthesis Enabled by Microfluidic Distillation, Angew. Chem. Int. Edit., 2010, 49, 899-903. CrossrefGoogle Scholar

  • [82] O’Sullivan B., Al-Bahrani H., Lawrence J., Campos M., Cázares A., Baganz F., Wohlgemuth R., Hailes H. C., Szita N., Modular microfluidic reactor and inline filtration system for the biocatalytic synthesis of chiral metabolites, J. Mol. Catal. B: Enzym., 2012, 77, 1-8. CrossrefGoogle Scholar

  • [83] Lawrence J., O’Sullivan B., Lye G. J., Wohlgemuth R., Szita N., Microfluidic multi-input reactor for biocatalytic synthesis using transketolase, J. Mol. Catal. B: Enzym., 2013, 95, 111-117. CrossrefGoogle Scholar

  • [84] Karande R., Schmid A., Buehler K., Miniaturizing biocatalysis: Enzyme-catalyzed reactions in an aqueous/organic segmented flow capillary microreactor, Adv. Synth. Catal., 2011, 353, 2511-2521. Google Scholar

  • [85] Tušek A., Šalić A., Kurtanjek Ž., Zelić B., Modeling and kinetic parameter estimation of alcohol dehydrogenase-catalyzed hexanol oxidation in a microreactor, Eng. Life Sci., 2012, 12, 49-56. CrossrefGoogle Scholar

  • [86] Valinger D., Vrsalović Presečki A., Kurtanjek Ž., Pohl M., Findrik Blažević Z., Vasić-Rački D., Continuous enzymatic carboligation of benzaldehyde and acetaldehyde in an enzyme ultrafiltration membrane reactor and laminar flow microreactors, J. Mol. Catal. B: Enzym., 2014, 102, 132-137. CrossrefGoogle Scholar

  • [87] Kanno K.-i., Maeda H., Izumo S., Ikuno M., Takeshita K., Tashiro A., Fujii M., Rapid enzymatic transglycosylation and oligosaccharide synthesis in a microchip reactor, Lab Chip, 2002, 2, 15-18. CrossrefGoogle Scholar

  • [88] Tušek A. J., Tišma M., Bregović V., Ptičar A., Kurtanjek Z., Zelić B., Enhancement of phenolic compounds oxidation using laccase from Trametes versicolor in a microreactor, Biotechnol. Bioprocess Eng., 2013, 18, 686-696. CrossrefGoogle Scholar

  • [89] Tanaka Y., Slyadnev M. N., Sato K., Tokeshi M., Kim H. B., Kitamori T., Acceleration of an enzymatic reaction in a microchip, Anal. Sci., 2001, 17, 809-810. CrossrefGoogle Scholar

  • [90] Miyazaki M., Nakamura H., Maeda H., Improved yield of enzyme reaction in microchannel reactor, Chem. Lett., 2001, 442-443. CrossrefGoogle Scholar

  • [91] Matosevic S., Szita N., Baganz F., Fundamentals and applications of immobilized microfluidic enzymatic reactors, J. Chem. Technol. Biotechnol., 2011, 86, 325-334. CrossrefGoogle Scholar

  • [92] Hereijgers J., Desmet G., Breugelmans T., De Malsche W., Strategies to integrate porous layers in microfluidic devices, Microelectron. Eng., 2015, 132, 1-13. CrossrefGoogle Scholar

  • [93] Asanomi Y., Yamaguchi H., Miyazaki M., Maeda H., Enzymeimmobilized microfluidic process reactors, Molecules, 2011, 16, 6041-6059. CrossrefGoogle Scholar

  • [94] Wong L. S., Khan F., Micklefield J., Selective covalent protein immobilization: Strategies and applications, Chem. Rev., 2009, 109, 4025-4053. CrossrefGoogle Scholar

  • [95] Stojkovič G., Plazl I., Žnidaršič-Plazl P., L-Malic acid production within a microreactor with surface immobilised fumarase, Microfluid. Nanofluid., 2011, 10, 627-635. CrossrefGoogle Scholar

  • [96] Vojinović V., Esteves F. M. F., Cabral J. M. S., Fonseca L. P., Bienzymatic analytical microreactors for glucose, lactate, ethanol, galactose and l-amino acid monitoring in cell culture media, Anal. Chim. Acta, 2006, 565, 240-249. Google Scholar

  • [97] Matosevic S., Lye G. J., Baganz F., Immobilised enzyme microreactor for screening of multi-step bioconversions: Characterisation of a de novo transketolase-ω-transaminase pathway to synthesise chiral amino alcohols, J. Biotechnol., 2011, 155, 320-329. Google Scholar

  • [98] Ogończyk D., Jankowski P., Garstecki P., Functionalization of polycarbonate with proteins; Open-tubular enzymatic microreactors, Lab Chip, 2012, 12, 2743-2748. CrossrefGoogle Scholar

  • [99] Qu H., Wang H., Huang Y., Zhong W., Lu H., Kong J., Yang P., Liu B., Stable microstructured network for protein patterning on a plastic microfluidic channel: Strategy and characterization of on-chip enzyme microreactors, Anal. Chem., 2004, 76, 6426-6433. CrossrefGoogle Scholar

  • [100] Křenková J., Bilková Z., Foret F., Characterization of a monolithic immobilized trypsin microreactor with on-line coupling to ESI-MS, J. Sep. Sci., 2005, 28, 1675-1684. CrossrefGoogle Scholar

  • [101] Cerqueira M. R. F., Grasseschi D., Matos R. C., Angnes L., A novel functionalisation process for glucose oxidase immobilisation in poly(methyl methacrylate) microchannels in a flow system for amperometric determinations, Talanta, 2014, 126, 20-26. CrossrefGoogle Scholar

  • [102] Huang Y., Shan W., Liu B., Liu Y., Zhang Y., Zhao Y., Lu H., Tang Y., Yang P., Zeolite nanoparticle modified microchip reactor for efficient protein digestion, Lab. Chip, 2006, 6, 534-539. CrossrefGoogle Scholar

  • [103] Ji J., Zhang Y., Zhou X., Kong J., Tang Y., Liu B., Enhanced protein digestion through the confinement of nanozeoliteassembled microchip reactors, Anal. Chem., 2008, 80, 2457-2463. CrossrefGoogle Scholar

  • [104] Thomsen M. S., Nidetzky B., Microfluidic reactor for continuous flow biotransformations with immobilized enzymes: The example of lactose hydrolysis by a hyperthermophilic β-glycoside hydrolase, Eng. Life Sci., 2008, 8, 40-48. CrossrefGoogle Scholar

  • [105] Jones F., Lu Z., Elmore B. B., Development of novel microscale system as immobilized enzyme bioreactor, Appl. Biochem. Biotechnol. A Enz. Eng. Biotechnol., 2002, 98-100, 627-640. Google Scholar

  • [106] Jones F., Forrest S., Palmer J., Lu Z., Elmore J., Elmore B. B., Immobilized enzyme studies in a microscale bioreactor, Appl.Biochem. Biotechnol. A Enz. Eng. Biotechnol., 2004, 113, 261-272. CrossrefGoogle Scholar

  • [107] Dartiguenave C., Hamad H., Waldron K. C., Immobilization of trypsin onto 1,4-diisothiocyanatobenzene-activated porous glass for microreactor-based peptide mapping by capillary electrophoresis: Effect of calcium ions on the immobilization procedure, Anal. Chim. Acta, 2010, 663, 198-205. Google Scholar

  • [108] Malecha K., Pijanowska D. G., Golonka L. J., Torbicz W., LTCC microreactor for urea determination in biological fluids, Sens. Actuators B, 2009, 141, 301-308. Google Scholar

  • [109] Alhadeff E. M., Salgado A. M., Cós O., Pereira Jr N., Valero F., Valdman B., Integrated biosensor systems for ethanol analysis, Appl. Biochem. Biotechnol., 2008, 146, 129-136. CrossrefGoogle Scholar

  • [110] Seong G. H., Heo J., Crooks R. M., Measurement of enzyme kinetics using a continuous-flow microfluidic system, Anal. Chem., 2003, 75, 3161-3167. CrossrefGoogle Scholar

  • [111] Srinivasan A., Bach H., Sherman D. H., Dordick J. S., Bacterial P450-catalyzed polyketide hydroxylation on a microfluidic platform, Biotechnol. Bioeng., 2004, 88, 528-535. CrossrefGoogle Scholar

  • [112] Baeza M., Lopez C., Alonso J., Lopez-Santin J., Alvaro G., Ceramic microsystem incorporating a microreactor with immobilized biocatalyst for enzymatic spectrophotometric assays, Anal Chem, 2010, 82, 1006-1011. CrossrefGoogle Scholar

  • [113] Nomura A., Shin S., Mehdi O. O., Kauffmann J. M., Preparation, characterization, and application of an enzymeimmobilized magnetic microreactor for flow injection analysis, Anal. Chem., 2004, 76, 5498-5502. CrossrefGoogle Scholar

  • [114] Li Y., Xu X., Yan B., Deng C., Yu W., Yang P., Zhang X., Microchip reactor packed with metal-ion chelated magnetic silica microspheres for highly efficient proteolysis, J. Proteome Res., 2007, 6, 2367-2375. CrossrefGoogle Scholar

  • [115] Liang R. P., Wang X. N., Liu C. M., Meng X. Y., Qiu J. D., Construction of graphene oxide magnetic nanocompositesbased on-chip enzymatic microreactor for ultrasensitive pesticide detection, J. Chromatogr. A, 2013, 1315, 28-35. Google Scholar

  • [116] Ngamsom B., Hickey A. M., Greenway G. M., Littlechild J. A., Watts P., Wiles C., Development of a high throughput screening tool for biotransformations utilising a thermophilic l-aminoacylase enzyme, J. Mol. Catal. B: Enzym., 2010, 63, 81-86. CrossrefGoogle Scholar

  • [117] Ma J., Liang Z., Qiao X., Deng Q., Tao D., Zhang L., Zhang Y., Organic-inorganic hybrid silica monolith based immobilized trypsin reactor with high enzymatic activity, Anal. Chem., 2008, 80, 2949-2956. CrossrefGoogle Scholar

  • [118] Chen Y., Wu M., Wang K., Chen B., Yao S., Zou H., Nie L., Vinyl functionalized silica hybrid monolith-based trypsin microreactor for on line digestion and separation via thiol-ene “click” strategy, J. Chromatogr. A, 2011, 1218, 7982-7988. Google Scholar

  • [119] Mersal G. A. M., Bilitewski U., Development of monolithic enzymatic reactors in glass microchips for the quantitative determination of enzyme substrates using the example of glucose determination via immobilized glucose oxidase, Electrophoresis, 2005, 26, 2303-2312. CrossrefGoogle Scholar

  • [120] Feng S., Ye M., Jiang X., Jin W., Zou H., Coupling the immobilized trypsin microreactor of monolithic capillary with μRPLC-MS/MS for shotgun proteome analysis, J. Proteome Res., 2006, 5, 422-428. CrossrefGoogle Scholar

  • [121] Rios G. M., Belleville M. P., Paolucci D., Sanchez J., Progress in enzymatic membrane reactors - A review, J. Membrane Sci., 2004, 242, 189-196. Google Scholar

  • [122] Machsun A. L., Gozan M., Nasikin M., Setyahadi S., Yoo Y. J., Membrane microreactor in biocatalytic transesterification of triolein for biodiesel production, Biotechnol. Bioprocess Eng., 2010, 15, 911-916. CrossrefGoogle Scholar

  • [123] Iqbal J., Iqbal S., Müller C. E., Advances in immobilized enzyme microbioreactors in capillary electrophoresis, Analyst, 2013, 138, 3104-3116. CrossrefGoogle Scholar

  • [124] Wang X., Li K., Adams E., Schepdael A. V., Recent advances in CE-mediated microanalysis for enzyme study, Electrophoresis, 2014, 35, 119-127. CrossrefGoogle Scholar

  • [125] Schoenherr R. M., Ye M., Vannatta M., Dovichi N. J., CE-microreactor-CE-MS/MS for protein analysis, Anal. Chem., 2007, 79, 2230-2238. CrossrefGoogle Scholar

  • [126] Li Y., Wojcik R., Dovichi N. J., A replaceable microreactor for on-line protein digestion in a two-dimensional capillary electrophoresis system with tandem mass spectrometry detection, J. Chromatogr. A, 2011, 1218, 2007-2011. Google Scholar

  • [127] Yu D., Van Antwerpen P., Patris S., Blankert B., Kauffmann J. M., Enzyme immobilized magnetic nanoparticles for in-line capillary electrophoresis and drug biotransformation studies: Application to paracetamol, Comb. Chem. High T. Scr., 2010, 13, 455-460. Google Scholar

  • [128] Iqbal J., An enzyme immobilized microassay in capillary electrophoresis for characterization and inhibition studies of alkaline phosphatases, Anal. Biochem., 2011, 414, 226-231. Google Scholar

  • [129] Jiang T. F., Liang T. T., Wang Y. H., Zhang W. H., Lv Z. H., Immobilized capillary tyrosinase microreactor for inhibitor screening in natural extracts by capillary electrophoresis, J. Pharm. Biomed. Anal., 2013, 84, 36-40. CrossrefGoogle Scholar

  • [130] Simonet B. M., Ríos A., Valcárcel M., Analytical potential of enzyme-coated capillary reactors in capillary zone electrophor esis,Electrophoresis, 2004, 25, 50-56. CrossrefGoogle Scholar

  • [131] Yang L., Shi J., Chen C., Wang S., Zhu L., Xie W., Guo L., Dual-enzyme, co-immobilized capillary microreactor combined with substrate recycling for high-sensitive glutamate determination based on CE, Electrophoresis, 2009, 30, 3527-3533. CrossrefGoogle Scholar

  • [132] Bolivar J. M., Consolati T., Mayr T., Nidetzky B., Shine a light on immobilized enzymes: Real-time sensing in solid supported biocatalysts, Trends Biotechnol., 2013, 31, 194-203. CrossrefGoogle Scholar

  • [133] Stich M. I. J., Fischer L. H., Wolfbeis O. S., Multiple fluorescent chemical sensing and imaging, Chem. Soc. Rev., 2010, 39, 3102-3114. CrossrefGoogle Scholar

  • [134] Bolivar J. M., Eisl I., Nidetzky B., Advanced characterization of immobilized enzymes as heterogeneous biocatalysts, Catal. Today, 2016, 259, Part 1, 66-80. Google Scholar

  • [135] Honda T., Miyazaki M., Nakamura H., Maeda H., Facile preparation of an enzyme-immobilized microreactor using a cross-linking enzyme membrane on a microchannel surface, Adv. Synth. Catal., 2006, 348, 2163-2171. Google Scholar

  • [136] Schilke K. F., Wilson K. L., Cantrell T., Corti G., McIlroy D. N., Kelly C., A novel enzymatic microreactor with Aspergillus oryzae β-galactosidase immobilized on silicon dioxide nanosprings, Biotechnol. Progress, 2010, 26, 1597-1605. CrossrefGoogle Scholar

  • [137] Song Y. S., Shin H. Y., Lee J. Y., Park C., Kim S. W., β-Galactosidase-immobilised microreactor fabricated using a novel technique for enzyme immobilisation and its application for continuous synthesis of lactulose, Food Chem., 2012, 133, 611-617. CrossrefGoogle Scholar

  • [138] Schwarz A., Thomsen M. S., Nidetzky B., Enzymatic synthesis of β-glucosylglycerol using a continuous-flow microreactor containing thermostable β-glycoside hydrolase celB immobilized on coated microchannel walls, Biotechnol. Bioeng., 2009, 103, 865-872. CrossrefGoogle Scholar

  • [139] Thomsen M. S., Nidetzky B., Coated-wall microreactor for continuous biocatalytic transformations using immobilized enzymes, Biotechnol. J., 2009, 4, 98-107. Google Scholar

  • [140] Drott J., Lindström K., Rosengren L., Laurell T., Porous silicon as the carrier matrix in microstructured enzyme reactors yielding high enzyme activities, J. Micromech. Microeng., 1997, 7, 14-23. CrossrefGoogle Scholar

  • [141] Bengtsson M., Ekström S., Marko-Varga G., Laurell T., Improved performance in silicon enzyme microreactors obtained by homogeneous porous silicon carrier matrix, Talanta, 2002, 56, 341-353. CrossrefGoogle Scholar

  • [142] Cumana S., Simons J., Liese A., Hilterhaus L., Smirnova I., Immobilization of glucose 6-phosphate dehydrogenase in silica-based hydrogels: A comparative study, J. Mol. Catal. B: Enzym., 2013, 85-86, 220-228. Google Scholar

  • [143] Cumana S., Ardao I., Zeng A. P., Smirnova I., Glucose-6- phosphate dehydrogenase encapsulated in silica-based hydrogels for operation in a microreactor, Eng. Life Sci., 2014, 14, 170-179. Google Scholar

  • [144] Szymańska K., Pudło W., Mrowiec-Białoń J., Czardybon A., Kocurek J., Jarzȩbski A. B., Immobilization of invertase on silica monoliths with hierarchical pore structure to obtain continuous flow enzymatic microreactors of high performance, Micropor. Mesopor. Mat., 2013, 170, 75-82. Google Scholar

  • [145] Lloret L., Eibes G., Moreira M. T., Feijoo G., Lema J. M., Miyazaki M., Improving the catalytic performance of laccase using a novel continuous-flow microreactor, Chem. Eng. J., 2013, 223, 497-506. Google Scholar

  • [146] Tuan Anuar S., Villegas C., Mugo S. M., Curtis J. M., The development of flow-through bio-catalyst microreactors from silica micro structured fibers for lipid transformations, Lipids, 2011, 46, 545-555. CrossrefGoogle Scholar

  • [147] Mugo S. M., Ayton K., Lipase immobilized microstructured fiber based flow-through microreactor for facile lipid transformations, J. Mol. Catal. B: Enzym., 2010, 67, 202-207. CrossrefGoogle Scholar

  • [148] Anuar S. T., Zhao Y. Y., Mugo S. M., Curtis J. M., The development of a capillary microreactor for transesterification reactions using lipase immobilized onto a silica monolith, J. Mol. Catal. B: Enzym., 2013, 92, 62-70. CrossrefGoogle Scholar

  • [149] Kaneno J., Kohama R., Miyazaki M., Uehara M., Kanno K., Fujii M., Shimizu H., Maeda H., Development of surface modification method and its application for preparation of enzyme-immobilized microreactor, Kagaku Kogaku Ronbun., 2004, 30, 154-158. CrossrefGoogle Scholar

  • [150] Bhangale A. S., Beers K. L., Gross R. A., Enzyme-catalyzed polymerization of end-functionalized polymers in a microreactor, Macromolecules, 2012, 45, 7000-7008. CrossrefGoogle Scholar

  • [151] Denčić I., De Vaan S., Noël T., Meuldijk J., De Croon M., Hessel V., Lipase-based biocatalytic flow process in a packed-bed microreactor, Ind. Eng. Chem. Res., 2013, 52, 10951-10960. CrossrefGoogle Scholar

  • [152] Forrest S. R., Elmore B. B., Palmer J. D., Activity and lifetime of organophosphorous hydrolase (OPH) immobilized using layerby- layer nano self-assembly on silicon microchannels, Catal. Today, 2007, 120, 30-34. CrossrefGoogle Scholar

  • [153] Tudorache M., Mahalu D., Teodorescu C., Stan R., Bala C., Parvulescu V. I., Biocatalytic microreactor incorporating HRP anchored on micro-/nano-lithographic patterns for flow oxidation of phenols, J. Mol. Catal. B: Enzym., 2011, 69, 133-139. CrossrefGoogle Scholar

  • [154] Abdul Halim A., Szita N., Baganz F., Characterization and multi-step transketolase-ω-transaminase bioconversions in an immobilized enzyme microreactor (IEMR) with packed tube, J. Biotechnol., 2013, 168, 567-575. Google Scholar

  • [155] Matosevic S., Lye G. J., Baganz F., Design and characterization of a prototype enzyme microreactor: Quantification of immobilized transketolase kinetics, Biotechnol. Progress, 2010, 26, 118-126. Google Scholar

  • [156] Fu H., Dencic I., Tibhe J., Sanchez Pedraza C. A., Wang Q., Noel T., Meuldijk J., de Croon M., Hessel V., Weizenmann N., Oeser T., Kinkeade T., Hyatt D., Van Roy S., Dejonghe W., Diels L., Threonine aldolase immobilization on different supports for engineering of productive, cost-efficient enzymatic microreactors, Chem. Eng. J., 2012, 207-208, 564-576. Google Scholar

  • [157] Ye M., Hu S., Schoenherr R. M., Dovichi N. J., On-line protein digestion and peptide mapping by capillary electrophoresis with post-column labeling for laser-induced flourescence detection, Electrophoresis, 2004, 25, 1319-1326. CrossrefGoogle Scholar

  • [158] Elmore B., Besser R., Lu Z., Forrest A., Jiang R., Jones F. Heterogeneous catalysis in a micro scale reactor fabricated from a biologically active polymer. in Proceedings of SPIE - The International Society for Optical Engineering. 2001. Google Scholar

  • [159] Tang X., Liu S., Wang S., Zhang Q., Cheng Z., Preparation of reversibly immobilized Jack bean urease on microchannel surface and application for enzyme inhibition assay, Microfluid. Nanofluid., 2014, 17, 721-728. CrossrefGoogle Scholar

  • [160] Malecha K., Pijanowska D., Golonka L., Torbicz W., LTCC enzymatic microreactor, J. Microelectron.Electron. Packag., 2007, 4, 51-56. CrossrefGoogle Scholar

  • [161] Łukowska E., Pijanowska D., Chwojnowski A., A new polymeric support for enzyme immobilization for biomicroreactors, Pol. J. Chem., 2008, 82, 1265-1272. Google Scholar

  • [162] Bolivar J. M., Nidetzky B., Smart enzyme immobilization in microstructured reactors, Chim. Oggi, 2013, 31, 50-54. Google Scholar

  • [163] Bolivar J. M., Wiesbauer J., Nidetzky B., Biotransformations in microstructured reactors: more than flowing with the stream?, Trends Biotechnol., 2011, 29, 333-342. CrossrefGoogle Scholar

About the article

Received: 2015-03-03

Accepted: 2015-09-11

Published Online: 2016-02-05


Citation Information: Biocatalysis, Volume 1, Issue 1, Pages 148–165, ISSN (Online) 2353-1746, DOI: https://doi.org/10.1515/boca-2015-0008.

Export Citation

© 2016 Enzo Laurenti, Ardson dos Santos Vianna Jr. . This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Chang-Tong Zhu, Yi-Yuan Mei, Lin-Lin Zhu, Yan Xu, Sheng Sheng, and Jun Wang
International Journal of Molecular Sciences, 2018, Volume 19, Number 9, Page 2590
[2]
Raju Panday, Abhishek Jung Poudel, Xiaohong Li, Manjila Adhikari, Muhammad Wajid Ullah, and Guang Yang
Colloids and Surfaces B: Biointerfaces, 2018
[3]
E. Oueis, H. Stevenson, M. Jaspars, N. J. Westwood, and J. H. Naismith
Chemical Communications, 2017
[4]
Donya Valikhani, Juan M. Bolivar, Martina Viefhues, David Nevil Mcilroy, Elwin Xander Vrouwe, and Bernd Nidetzky
ACS Applied Materials & Interfaces, 2017
[5]
Nataša Miložič, Martin Lubej, Mitja Lakner, Polona Žnidaršič-Plazl, and Igor Plazl
Chemical Engineering Journal, 2017, Volume 313, Page 374
[6]
Juan M. Bolivar, Marco A. Tribulato, Zdenek Petrasek, and Bernd Nidetzky
Biotechnology and Bioengineering, 2016, Volume 113, Number 11, Page 2342
[7]
Aline F. Oliveira, Amanda C. S. N. Pessoa, Reinaldo G. Bastos, and Lucimara G. de la Torre
Biotechnology Progress, 2016, Volume 32, Number 6, Page 1372
[8]
Paola Calza, Dario Zacchigna, and Enzo Laurenti
Environmental Science and Pollution Research, 2016, Volume 23, Number 23, Page 23742

Comments (0)

Please log in or register to comment.
Log in