Jump to ContentJump to Main Navigation
Show Summary Details
More options …


1 Issue per year

Open Access
See all formats and pricing
More options …

Computational Tools Applied to Enzyme Design − a review

Fernando García-Guevara
  • Corresponding author
  • Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, CP 62210, Cuernavaca, Morelos, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mayra Avelar
  • Corresponding author
  • Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, CP 62210, Cuernavaca, Morelos, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marcela Ayala
  • Corresponding author
  • Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, CP 62210, Cuernavaca, Morelos, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lorenzo Segovia
  • Corresponding author
  • Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, CP 62210, Cuernavaca, Morelos, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-02-02 | DOI: https://doi.org/10.1515/boca-2015-0009


The protein design toolbox has been greatly improved by the addition of enzyme computational simulations. Not only do they warrant a more ambitious and thorough exploration of sequence space, but a much higher number of variants and protein-ligand systems can be analyzed in silico compared to experimental engineering methods. Modern computational tools are being used to redesign and also for de novo generation of enzymes. These approaches are contingent on a deep understanding of the reaction mechanism and the enzyme’s three-dimensional structure coordinates, but the wealth of information produced by these analyses leads to greatly improved or even totally new types of catalysis.

Keywords: protein engineering; enzyme design; molecular dynamics; quantum mechanics


  • [1] Barrozo A, Borstnar R, Marloie G, Kamerlin SC. Computational protein engineering: bridging the gap between rational design and laboratory evolution. Int J Mol Sci, 2012, 13(10), 12428-60. CrossrefGoogle Scholar

  • [2] Wijma HJ, Janssen DB. Computational design gains momentum in enzyme catalysis engineering. FEBS Journal, 2013, 280(13), 2948-60. Google Scholar

  • [3] Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K. Engineering the third wave of biocatalysis. Nature, 2012, 485(7397), 185-94. Google Scholar

  • [4] Hilvert D. Critical analysis of antibody catalysis. Annual review of biochemistry, 2000, 751-93. CrossrefGoogle Scholar

  • [5] Nanda V, Koder RL. Designing artificial enzymes by intuition and computation. Nature chemistry, 2010, 2(1), 15-24. CrossrefGoogle Scholar

  • [6] Sasaki T, Kaiser ET. Helichrome: synthesis and enzymic activity of a designed hemeprotein. Journal of the American Chemical Society, 1989, 111, 380-1. Google Scholar

  • [7] Johnsson K, Allemann RK, Widmer H, Benner Sa. Synthesis, structure and activity of artificial, rationally designed catalytic polypeptides. Nature, 1993, 365(6446), 530-2. Google Scholar

  • [8] Rossi P, Tecilla P, Baltzer L, Scrimin P. De novo metallonucleases based on helix-loop-helix motifs. Chemistry - A European Journal, 2004, 10(17), 4163-70. CrossrefGoogle Scholar

  • [9] Harbury PB, Plecs JJ, Tidor B, Alber T, Kim PS. High-resolution protein design with backbone freedom. Science, 1998, 282(5393), 1462-7. Google Scholar

  • [10] Koder RL, Valentine KG, Cerda J, Noy D, Smith KM, Wand AJ, et al. Nativelike structure in designed four α-helix bundles driven by buried polar interactions. J Am Chem Soc, 2006, 128(45), 14450-1. Google Scholar

  • [11] Koder RL, Anderson JLR, Solomon La, Reddy KS, Moser CC, Dutton PL. Design and engineering of an O(2) transport protein. Nature, 2009, 458(7236), 305-9. Google Scholar

  • [12] Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D. Design of a novel globular protein fold with atomic-level accuracy. Science, 2003, 302(5649), 1364-8. Google Scholar

  • [13] Taylor SE, Rutherford TJ, Allemann RK. Design of a folded, conformationally stable oxaloacetate decarboxylase. Journal of the Chemical Society, Perkin Trans 2, 2002, (4), 751-5. Google Scholar

  • [14] Nicoll AJ, Allemann RK. Nucleophilic and general acid catalysis at physiological pH by a designed miniature esterase. Org Biomol Chem, 7, 2(15), 2175-80. Google Scholar

  • [15] Marvin JS, Hellinga HW. Conversion of a maltose receptor into a zinc biosensor by computational design. Proc Natl Acad Sci USA, 2001, 98(9), 4955-60. CrossrefGoogle Scholar

  • [16] Bolon DN, Mayo SL. Enzyme-like proteins by computational design. Proc Natl Acad Sci USA, 2001, 98(25), 14274-9. Google Scholar

  • [17] Jiang L, Althoff EA, Clemente FR, Doyle L, Rothlisberger D, Zanghellini A, et al. De novo computational design of retro-aldol enzymes. Science, 2008, 319(5868), 1387-91. Google Scholar

  • [18] Rothlisberger D, Khersonsky O, Wollacott AM, Jiang L, DeChancie J, Betker J, et al. Kemp elimination catalysts by computational enzyme design. Nature, 2008, 453(7192), 190-5. Google Scholar

  • [19] Siegel JB, Zanghellini A, Lovick HM, Kiss G, Lambert AR, Clair JLS, et al. Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder. Science, 2010, 105(2004), 309-13. Google Scholar

  • [20. Tommos C, Skalicky JJ, Pilloud DL, Wand aJ, Dutton PL. De novo proteins as models of radical enzymes. Biochemistry, 1999, 38(29), 9495-507. CrossrefGoogle Scholar

  • [21] Damborsky J, Brezovsky J. Computational tools for designing and engineering enzymes. Curr Opin Chem Biol, 2014, 4, 19, 8-16. CrossrefGoogle Scholar

  • [22] Chovancova E, Pavelka A, Benes P, Strnad O, Brezovsky J, Kozlikova B, et al. CAVER 3.0: A Tool for the Analysis of Transport Pathways in Dynamic Protein Structures. PLoS Comput Biol, 2012, 8(10), e1002708. Google Scholar

  • [23] Bhabha G, Biel JT, Fraser JS. Keep on Moving: Discovering and Perturbing the Conformational Dynamics of Enzymes. Accounts Chem Res, 2015, 48(2), 423-30. CrossrefGoogle Scholar

  • [24] Ion BF, Bushnell EAC, Luna PD, Gauld JW. A Molecular Dynamics (MD) and Quantum Mechanics/Molecular Mechanics (QM/ MM) Study on Ornithine Cyclodeaminase (OCD): A Tale of Two Iminiums. Int J Mol Sci, 2012, 13(10), 12994. CrossrefGoogle Scholar

  • [25] Chu Y, Li G, Guo H. QM/MM MD and free energy simulations of the methylation reactions catalyzed by protein arginine methyltransferase PRMT3. Can J Chem, 2013, 91(7), 605-12. Google Scholar

  • [26] Hargis JC, White JK, Chen Y, Woodcock HL. Can Molecular Dynamics and QM/MM Solve the Penicillin Binding Protein Protonation Puzzle? J Chem Inf Model, 2014, 54(5), 1412-24. CrossrefGoogle Scholar

  • [27] Monza E, Lucas MF, Camarero S, Alejaldre LC, Martínez AT, Guallar V. Insights into Laccase Engineering from Molecular Simulations: Toward a Binding-Focused Strategy. J Phys Chem Lett, 2015, 6(8), 1447-53. CrossrefGoogle Scholar

  • [28] Kiss G, Celebi-Olcum N, Moretti R, Baker D, Houk KN. Computational enzyme design. Angew Chem Int Ed Engl, 2013, 52(22), 5700-25. CrossrefGoogle Scholar

  • [29] Casey ML, Kemp DS, Paul KG, Cox DD. Physical organic chemistry of benzisoxazoles. I. Mechanism of the base-catalyzed decomposition of benzisoxazoles. J Org Chem, 1973, 38(13), 2294-301. CrossrefGoogle Scholar

  • [30] Kemp DS, Cox DD, Paul KG. Physical organic chemistry of benzisoxazoles. IV. Origins and catalytic nature of the solvent rate acceleration for the decarboxylation of 3-carboxybenzisoxazoles. J Am Chem Soc, 1975, 97(25), 7312-8. Google Scholar

  • [31] Lassila JK, Privett HK, Allen BD, Mayo SL. Combinatorial methods for small-molecule placement in computational enzyme design. Proc Natl Acad Sci USA, 2006, 103(45), 16710-5. Google Scholar

  • [32] Privett HK, Kiss G, Lee TM, Blomberg R, Chica RA, Thomas LM, et al. Iterative approach to computational enzyme design. Proc Natl Acad Sci USA, 2012, 109(10), 3790-5. Google Scholar

  • [33] Khersonsky O, Kiss G, Röthlisberger D, Dym O, Albeck S, Houk KN, et al. Bridging the gaps in design methodologies by evolutionary optimization of the stability and proficiency of designed Kemp eliminase KE59. Proc Natl Acad Sci USA, 2012, 109(26), 10358-63. Google Scholar

  • [34] Blomberg R, Kries H, Pinkas DM, Mittl PRE, Grutter MG, Privett HK, et al. Precision is essential for efficient catalysis in an evolved Kemp eliminase. Nature, 2013, 503(7476), 418-21. Google Scholar

  • [35] Giger L, Caner S, Obexer R, Kast P, Baker D, Ban N, et al. Evolution of a designed retro-aldolase leads to complete active site remodeling. Nat Chem Biol, 2013, 9(8), 494-8. CrossrefGoogle Scholar

  • [36] Warshel A, Levitt M. Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol, 1976, 103(2), 227-49. Google Scholar

  • [37] Alderson RG, Ferrari LD, Mavridis L, McDonagh JL, Mitchell JBO, Nath N. Enzyme Informatics. Curr Top Med Chem, 2012, 12(17), 1911-23. CrossrefGoogle Scholar

  • [38] Mulholland Adrian J. Computational enzymology: modelling the mechanisms of biological catalysts. Biochem Soc Trans, 2008, 36(1), 22-6. Google Scholar

  • [39] Senn H, Thiel W. QM/MM Methods for Biological Systems. In: Reiher M, editor. Atomistic Approaches in Modern Biology. Top Curr Chem, 2007, 268, 173-290. Google Scholar

  • [40] Hu H, Yang W. Development and application of ab initio QM/MM methods for mechanistic simulation of reactions in solution and in enzymes. J Mol Struct, 2009, 898(1–3), 17-30. Google Scholar

  • [41] Groenhof G. Introduction to QM/MM Simulations. In: Monticelli L, Salonen E, editors. Biomolecular Simulations. Met Mol Biol, 2013, 924, 43-66. Google Scholar

  • [42] Vidossich P, Magistrato A. QM/MM Molecular Dynamics Studies of Metal Binding Proteins. Biomolecules, 2014, 4(3), 616. CrossrefGoogle Scholar

  • [43] Torres E, Ayala M., Biocatalysis by Metalloenzymes. In: Poeppelmeier JR, editor. Comprehensive Inorganic Chemistry II (Second Edition). Amsterdam: Elsevier; 2013, 685-735. Google Scholar

  • [44] Lodola A, De Vivo M., The Increasing Role of QM/MM in Drug Discovery. In: Christo C, Tatyana K-C, editors. Advances in Protein Chemistry and Structural Biology, Academic Press, 2012, 337-62. Google Scholar

  • [45] Feliciano GT, da Silva AJR. Unravelling the reaction mechanism of matrix metalloproteinase 3 using QM/MM calculations. J Mol Struct, 2015, 1091(0), 125-32. Google Scholar

  • [46] Hermann JC, Hensen C, Ridder L, Mulholland AJ, Höltje H-D. Mechanisms of Antibiotic Resistance: QM/MM Modeling of the Acylation Reaction of a Class A β-Lactamase with Benzylpenicillin. J Am Chem Soc, 2005, 127(12), 4454-65. Google Scholar

  • [47] Hermann JC, Ridder L, Holtje H-D, Mulholland AJ. Molecular mechanisms of antibiotic resistance: QM/MM modelling of deacylation in a class A Google Scholar

  • [small beta]-lactamase. Org Biomol Chem, 2006, 4(2), 206-10. Google Scholar

  • [48] Kong X, Ouyang S, Liang Z, Lu J, Chen L, Shen B, et al. Catalytic Mechanism Investigation of Lysine-Specific Demethylase 1 (LSD1): A Computational Study. PLoS ONE, 2011, 6(9), e25444. CrossrefGoogle Scholar

  • [49] Palermo G, Rothlisberger U, Cavalli A, De Vivo M. Computational insights into function and inhibition of fatty acid amide hydrolase. Eur J Med Chem, 2015, 91(0), 15-26. Google Scholar

  • [50] Guallar V, Wallrapp FH. QM/MM methods: Looking inside heme proteins biochemisty. Biophys Chem, 2010, 149(1–2), 1-11. Google Scholar

  • [51] Wallrapp F, Masone D, Guallar V. Electron Transfer in the P450cam/PDX Complex. The QM/MM e-Pathway†. J Phys Chem A, 2008, 18, 112(50), 12989-94. Google Scholar

  • [52] Vidal-Limón A, Águila S, Ayala M, Batista CV, Vazquez-Duhalt R. Peroxidase activity stabilization of cytochrome P450BM3 by rational analysis of intramolecular electron transfer. J Inorg Biochem, 2013, 122(0), 18-26. Google Scholar

  • [53] Jung ST, Lauchli R, Arnold FH. Cytochrome P450: taming a wild type enzyme. Curr Opin Biotech, 2011, 22(6), 809-17. CrossrefGoogle Scholar

  • [54] Valderrama B, Ayala M, Vazquez-Duhalt R. Suicide Inactivation of Peroxidases and the Challenge of Engineering More Robust Enzymes. Chem Biol, 2002, 9(5), 555-65. CrossrefGoogle Scholar

  • [55] Frushicheva MP, Warshel A. Towards Quantitative Computer Aided Studies of Enzymatic Enantioselectivity: The case of Candida antarctica lipase A. Chembiochem, 2012, 13(2), 215-23. CrossrefGoogle Scholar

  • [56] Frushicheva MP, Cao J, Warshel A. Challenges and Advances in Validating Enzyme Design Proposals: The Case of Kemp Eliminase Catalysis. Biochemistry, 2011, 50(18), 3849-58. CrossrefGoogle Scholar

  • [57] Kries H, Blomberg R, Hilvert D. De novo enzymes by computational design. Curr Opin Cheml Biol, 2013, 17(2), 221-8. CrossrefGoogle Scholar

  • [58] Silva JRA, Roitberg AE, Alves CN. Catalytic Mechanism of L,D-Transpeptidase 2 from Mycobacterium tuberculosis Described by a Computational Approach: Insights for the Design of New Antibiotics Drugs. J Chem Inf Model, 2014, 54(9), 2402-10. CrossrefGoogle Scholar

About the article

Received: 2015-08-11

Accepted: 2015-11-10

Published Online: 2016-02-02

Citation Information: Biocatalysis, Volume 1, Issue 1, Pages 109–117, ISSN (Online) 2353-1746, DOI: https://doi.org/10.1515/boca-2015-0009.

Export Citation

© 2015 Fernando García-Guevara, et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Jeffrey C Moore, Agustina Rodriguez-Granillo, Alejandro Crespo, Sridhar Govindarajan, Mark Welch, Kaori Hiraga, Katrina Lexa, Nicholas Marshall, and Matthew D. Truppo
ACS Synthetic Biology, 2018
Tucker Burgin, Jerry Ståhlberg, and Heather B. Mayes
Journal of Biological Chemistry, 2018, Volume 293, Number 13, Page 4680

Comments (0)

Please log in or register to comment.
Log in