Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biocatalysis

1 Issue per year

Open Access
Online
ISSN
2353-1746
See all formats and pricing
More options …

Biosensors based on oxidative enzymes for detection of environmental pollutants

Georgette Rebollar-Pérez
  • Corresponding author
  • Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla. Edificio 100 C. Ciudad Universitaria, Puebla 72570, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ José Campos-Terán
  • Corresponding author
  • Departamento de Procesos y Tecnología, DCNI, Universidad Autónoma Metropolitana, Unidad Cuajimalpa. México D.F., 05300, México.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nancy Ornelas-Soto
  • Corresponding author
  • Laboratorio de Nanotecnología Ambiental. Centro del Agua para América Latina y el Caribe. Tecnológico de Monterrey. Monterrey, N.L., CP 64849, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alia Méndez-Albores
  • Corresponding author
  • Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla. Edifico 103 G Ciudad Universitaria. Puebla 72570, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eduardo Torres
  • Corresponding author
  • Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla. Edifico 103 G Ciudad Universitaria. Puebla 72570, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-01-21 | DOI: https://doi.org/10.1515/boca-2015-0010

Abstract

In recent years, the continuous and accumulative discharge of toxic and contaminating compounds to the environment makes necessary to propose precise and quick methods for their detection and quantitation. Especially when one considers that the environmental impact of some of these emerging contaminants has not been clearly determined. Enzyme-based biosensors are an interesting alternative when inspecting different pollutants present in the environment in a quick, efficient, automatized, and economic way. Oxidative enzymes such as peroxidases and polyphenol oxidases (laccases and tyrosinases) are versatile and highly functional enzymes used for analyte recognition. Therefore, these enzymes are considered attractive and interesting biomolecules to act as recognition elements in biosensors. In this regard, detection of pollutants such as pesticides, phenols, heavy metals, and pharmaceutical compounds by using oxidative enzymes as recognition elements in biosensors is a versatile field, and it is the focus of the present review.

Keywords: enzyme biosensors; emerging contaminants; laccases; peroxidases

References

  • [1] McNaught, A., Wilkinson, A., Compendium of chemical terminology, 2nd ed. (the “Gold Book”), Blackwell Scientific Publications, Oxford, 1997. Google Scholar

  • [2] Eggins, B. R., Chemical Sensors and Biosensors, John Wiley and Sons, United Kingdom, 2002. Google Scholar

  • [3] Bănică, F.-G., Chemical Sensors and Biosensors: Fundamentals and Applications 1st ed., Jonh Wiley and Sons, Ltd, United Kingdom, 2012, p. 541. Google Scholar

  • [4] Thévenot, D. R., Toth, K., Durst, R. A., Wilson, G. S., Electrochemical biosensors: recommended definitions and classification1, Biosensors Bioelectron., 2001, 16, 121-131. CrossrefGoogle Scholar

  • [5] Luong, J. H. T., Male, K. B., Glennon, J. D., Biosensor technology: Technology push versus market pull, Biotechnol. Adv., 2008, 26, 492-500. CrossrefGoogle Scholar

  • [6] Mascini M, S., T., Biosensors for biomarkers in medical diagnostics, Biomarkers, 2008, 13, 637-657. CrossrefGoogle Scholar

  • [7] Amine, A., Mohammadi, H., Bourais, I., Palleschi, G., Enzyme inhibition-based biosensors for food safety and environmental monitoring, Biosensors Bioelectron., 2006, 21, 1405-1423. CrossrefGoogle Scholar

  • [8] Newman, J., Setford, S., Enzymatic biosensors, Mol. Biotechnol., 2006, 32, 249-268. CrossrefGoogle Scholar

  • [9] Cao, S., Chen, J., Jin, X., Wu, W., Zhao, Z., Enzyme-Based Biosensors: Synthesis and Applications. In: (Eds.), Biosensor Nanomaterials, ed., Wiley-VCH Verlag GmbH & Co. KGaA 2011. Google Scholar

  • [10] Bănică, F.-G., Enzymes and Enzymatic Sensors. In: (Eds.), Chemical Sensors and Biosensors, ed., John Wiley & Sons, Ltd 2012. Google Scholar

  • [11] Rodriguez-Mozaz, S., Alda, M. J. L. d., Marco, M.-P., Barceló, D., Biosensors for environmental monitoring: A global perspective, Talanta, 2005, 65, 291-297. Google Scholar

  • [12] Rodriguez-Mozaz, S., Lopez de Alda, M., Barceló, D., Biosensors as useful tools for environmental analysis and monitoring, Anal. Bioanal. Chem., 2006, 386, 1025-1041. Google Scholar

  • [13] D’Orazio, P., Biosensors in clinical chemistry, Clin. Chim. Acta, 2003, 334, 41-69. Google Scholar

  • [14] Illanes, A., Enzyme biocatalysis: principles and applications, Springer-Netherlands, New Delhi, India, 2008. Google Scholar

  • [15] Casella, L., Monzani, E., Nicolis, S., Potential applications of peroxidases in the fine chemical industries. In: E. Torres, M. Ayala. (Eds.), Biocatalysis Based on Heme Peroxidases, 1sd ed., Springer Berlin Heidelberg, Heilderberg, Germany, 2010. Google Scholar

  • [16] Torres-Duarte, C., Vazquez-Duhalt, R., Applications and Prospective of Peroxidase Biocatalysis in the Environmental Field. In: E. Torres, M. Ayala. (Eds.), Biocatalysis Based on Heme Peroxidases, ed., Springer Berlin Heidelberg 2010. Google Scholar

  • [17] Pundir, C. S., Chauhan, N., Acetylcholinesterase inhibitionbased biosensors for pesticide determination: A review, Anal. Biochem., 2012, 429, 19-31. Google Scholar

  • [18] Miao, Y., He, N., Zhu, J.-J., History and new developments of assays for cholinesterase activity and inhibition, Chem. Rev., 2010, 110, 5216-5234. Google Scholar

  • [19] Van Dyk, J. S., Pletschke, B., Review on the use of enzymes for the detection of organochlorine, organophosphate and carbamate pesticides in the environment, Chemosphere, 2011, 82, 291-307. Google Scholar

  • [20] Mercurio, P., Flores, F., Mueller, J. F., Carter, S., Negri, A. P., Glyphosate persistence in seawater, Mar. Pollut. Bull., 2014, 85, 385-390. Google Scholar

  • [21] Hsu, C.-C., Whang, C.-W., Microscale solid phase extraction of glyphosate and aminomethylphosphonic acid in water and guava fruit extract using alumina-coated iron oxide nanoparticles followed by capillary electrophoresis and electrochemiluminescence detection, J. Chromatogr., 2009, 1216, 8575-8580. Google Scholar

  • [22] Qian, K., Tang, T., Shi, T., Wang, F., Li, J., Cao, Y., Residue determination of glyphosate in environmental water samples with high-performance liquid chromatography and UV detection after derivatization with 4-chloro-3,5-dinitrobenzotrifluoride, Anal. Chim. Acta, 2009, 635, 222-226. Google Scholar

  • [23] Hanke, I., Singer, H., Hollender, J., Ultratrace-level determination of glyphosate, aminomethylphosphonic acid and glufosinate in natural waters by solid-phase extraction followed by liquid chromatography–tandem mass spectrometry: performance tuning of derivatization, enrichment and detection, Anal. Bioanal. Chem., 2008, 391, 2265-2276. Google Scholar

  • [24] Oliveira, G. C., Moccelini, S. K., Castilho, M., Terezo, A. J., Possavatz, J., Magalhães, M. R. L., Dores, E. F. G. C., Biosensor based on atemoya peroxidase immobilised on modified nanoclay for glyphosate biomonitoring, Talanta, 2012, 98, 130-136. Google Scholar

  • [25] Songa, E. A., Arotiba, O. A., Owino, J. H. O., Jahed, N., Baker, P. G. L., Iwuoha, E. I., Electrochemical detection of glyphosate herbicide using horseradish peroxidase immobilized on sulfonated polymer matrix, Bioelectrochemistry, 2009, 75, 117-123. Google Scholar

  • [26] Ribeiro, F. W. P., Barroso, M. F., Morais, S., Viswanathan, S., de Lima-Neto, P., Correia, A. N., Oliveira, M. B. P. P., Delerue- Matos, C., Simple laccase-based biosensor for formetanate hydrochloride quantification in fruits, Bioelectrochemistry, 2014, 95, 7-14. Google Scholar

  • [27] Qiu, C., Chen, T., Wang, X., Li, Y., Ma, H., Application of horseradish peroxidase modified nanostructured Au thin films for the amperometric detection of 4-chlorophenol, Colloids Surf. B. Biointerfaces, 2013, 103, 129-135. Google Scholar

  • [28] Rodriguez-Mozaz, S., Marco, M.-P., Lopez de Alda, M. J., Barceló, D., Biosensors for environmental applications: Future development trends, Pure Appl. Chem, 2004, 76, 723-752. Google Scholar

  • [29] Nomngongo, P. N., Ngila, J. C., Nyamori, V. O., Songa, E. A., Iwuoha, E. I., Determination of selected heavy metals using amperometric horseradish peroxidase (HRP) inhibition biosensor, Anal. Lett., 2011, 44, 2031-2046. CrossrefGoogle Scholar

  • [30] Silwana, B., Van Der Horst, C., Iwuoha, E., Somerset, V., Amperometric determination of cadmium, lead, and mercury metal ions using a novel polymer immobilised horseradish peroxidase biosensor system, J. Environ. Sci. Heal. A, 2014, 49, 1501-1511. Google Scholar

  • [31] Moyo, M., Okonkwo, J. O., Agyei, N. M., An amperometric biosensor based on horseradish peroxidase immobilized onto maize tassel-multi-walled carbon nanotubes modified glassy carbon electrode for determination of heavy metal ions in aqueous solution, Enzyme Microb. Technol., 2014, 56, 28-34. CrossrefGoogle Scholar

  • [32] Moyo, M., Okonkwo, J. O., Horseradish peroxidase biosensor based on maize tassel–MWCNTs composite for cadmium detection, Sensors Actuators B: Chem., 2014, 193, 515-521. Google Scholar

  • [33] Domı́nguez Renedo, O., Alonso Lomillo, M. A., Arcos Martinez, M. J., Optimisation procedure for the inhibitive determination of chromium(III) using an amperometric tyrosinase biosensor, Anal. Chim. Acta, 2004, 521, 215-221. Google Scholar

  • [34] Khetan, S. K., Collins, T. J., Human pharmaceuticals in the aquatic environment: a challenge to green chemistry, Chem. Rev., 2007, 107, 2319-2364. Google Scholar

  • [35] Verlicchi, P., Al Aukidy, M., Zambello, E., Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment—A review, Sci. Total Environ., 2012, 429, 123-155. Google Scholar

  • [36] Fent, K., Weston, A. A., Caminada, D., Ecotoxicology of human pharmaceuticals, Aquat. Toxicol., 2006, 76, 122-159. Google Scholar

  • [37] Hernando, M. D., Mezcua, M., Fernández-Alba, A. R., Barceló, D., Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments, Talanta, 2006, 69, 334-342. Google Scholar

  • [38] Alonso-Lomillo, M. A., Domínguez-Renedo, O., Hernández- Martín, A., Arcos-Martínez, M. J., Horseradish peroxidase covalent grafting onto screen-printed carbon electrodes for levetiracetam chronoamperometric determination, Anal. Biochem., 2009, 395, 86-90. Google Scholar

  • [39] Bertolino, F. A., De Vito, I. E., Messina, G. A., Fernández, H., Raba, J., Microfluidic-enzymatic biosensor with immobilized tyrosinase for electrochemical detection of pipemidic acid in pharmaceutical samples, J. Electroanal. Chem., 2011, 651, 204-210. Google Scholar

  • [40] Moccelini, S. K., Franzoi, A. C., Vieira, I. C., Dupont, J., Scheeren, C. W., A novel support for laccase immobilization: Cellulose acetate modified with ionic liquid and application in biosensor for methyldopa detection, Biosensors Bioelectron., 2011, 26, 3549-3554. CrossrefGoogle Scholar

  • [41] Kolpin, D. W., Skopec, M., Meyer, M. T., Furlong, E. T., Zaugg, S. D., Urban contribution of pharmaceuticals and other organic wastewater contaminants to streams during differing flow conditions, Sci. Total Environ., 2004, 328, 119-130. Google Scholar

  • [42] González-Sánchez, M. I., Rubio-Retama, J., López-Cabarcos, E., Valero, E., Development of an acetaminophen amperometric biosensor based on peroxidase entrapped in polyacrylamide microgels, Biosensors Bioelectron., 2011, 26, 1883-1889. CrossrefGoogle Scholar

  • [43] Méndez-Albores, A., Tarín, C., Rebollar-Pérez, G., Dominguez- Ramirez, L., Torres, E., Biocatalytic spectrophotometric method to detect paracetamol in water samples, J. Environ. Sci. Heal. A, 2015, 50, 1046-1056. CrossrefGoogle Scholar

  • [44] Karim, F., Fakhruddin, A. N. M., Recent advances in the development of biosensor for phenol: a review, Rev. Environ. Sci. Bio/Tecnhnol., 2012, 11, 261-274. CrossrefGoogle Scholar

  • [45] Durán, N., Rosa, M. A., D’Annibale, A., Gianfreda, L., Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: a review, Enzyme Microb. Technol., 2002, 31, 907-931. CrossrefGoogle Scholar

  • [46] Campos-Terán, J., Iñarritu, I., Aburto, J., Torres, E., Enhanced functionality of peroxidases by its immobilization at the solid– Llquid interface of mesoporous materials and nanoparticles. In: (Eds.), Proteins in Solution and at Interfaces, ed., John Wiley & Sons, Inc. 2013. Google Scholar

  • [47] Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., Fernandez-Lafuente, R., Improvement of enzyme activity, stability and selectivity via immobilization techniques, Enzyme Microb. Technol., 2007, 40, 1451-1463. CrossrefGoogle Scholar

  • [48] Rodrigues, R. C., Ortiz, C., Berenguer-Murcia, A., Torres, R., Fernandez-Lafuente, R., Modifying enzyme activity and selectivity by immobilization, Chem. Soc. Rev., 2013, 42, 6290-6307. CrossrefGoogle Scholar

  • [49] Wang, Y., Xu, H., Zhang, J., Li, G., Electrochemical sensors for clinic analysis, Sensors (Basel, Switzerland), 2008, 8, 2043-2081. CrossrefGoogle Scholar

  • [50] Sheldon, R. A., van Pelt, S., Enzyme immobilisation in biocatalysis: why, what and how, Chem. Soc. Rev., 2013, 42, 6223-6235. CrossrefGoogle Scholar

  • [51] Longoria, A., Tinoco, R., Torres, E., Enzyme technology of peroxidases: immobilization, chemical and genetic modification. In: E. Torres, M. Ayala. (Eds.), Biocatalysis Based on Heme Peroxidases, 1sd ed., Springer Berlin Heidelberg, Heidelberg, Germany, 2010. Google Scholar

  • [52] Fernandes, S. C., de Oliveira, I. R. W. Z., Fatibello-Filho, O., Spinelli, A., Vieira, I. C., Biosensor based on laccase immobilized on microspheres of chitosan crosslinked with tripolyphosphate, Sensors Actuators B: Chem., 2008, 133, 202-207. Google Scholar

  • [53] Santhiago, M., Vieira, I. C., l-Cysteine determination in pharmaceutical formulations using a biosensor based on laccase from Aspergillus oryzae, Sensors Actuators B: Chem., 2007, 128, 279-285. Google Scholar

  • [54] Gupta, G., Rajendran, V., Atanassov, P., Laccase biosensor on monolayer-modified gold electrode, Electroanalysis, 2003, 15, 1577-1583. CrossrefGoogle Scholar

  • [55] Yu, J., Ju, H., Pure Ooganic phase phenol biosensor based on tyrosinase entrapped in a vapor deposited titania sol-gel membrane, Electroanalysis, 2004, 16, 1305-1310. CrossrefGoogle Scholar

  • [56] Yildiz, H. B., Castillo, J., Guschin, D. A., Toppare, L., Schuhmann, W., Phenol biosensor based on electrochemically controlled integration of tyrosinase in a redox polymer, Microchimica Acta, 2007, 159, 27-34. Google Scholar

  • [57] Tembe, S., Inamdar, S., Haram, S., Karve, M., D’Souza, S. F., Electrochemical biosensor for catechol using agarose–guar gum entrapped tyrosinase, J. Biotechnol., 2007, 128, 80-85. Google Scholar

  • [58] Cipolatti, E. P., Silva, M. J. A., Klein, M., Feddern, V., Feltes, M. M. C., Oliveira, J. V., Ninow, J. L., de Oliveira, D., Current status and trends in enzymatic nanoimmobilization, J. Mol. Catal. B: Enzym., 2014, 99, 56-67. CrossrefGoogle Scholar

  • [59] Ansari, S. A., Husain, Q., Potential applications of enzymes immobilized on/in nano materials: A review, Biotechnol. Adv., 2012, 30, 512-523. CrossrefGoogle Scholar

  • [60] Timur, S., Pazarlıoǧlu, N., Pilloton, R., Telefoncu, A., Thick film sensors based on laccases from different sources immobilized in polyaniline matrix, Sensors Actuators B: Chem., 2004, 97, 132-136. Google Scholar

  • [61] Chawla, S., Rawal, R., Sharma, S., Pundir, C. S., An amperometric biosensor based on laccase immobilized onto nickel nanoparticles/carboxylated multiwalled carbon nanotubes/polyaniline modified gold electrode for determination of phenolic content in fruit juices, Biochem. Eng. J., 2012, 68, 76-84. Google Scholar

  • [62] Chawla, S., Rawal, R., Pundir, C. S., Fabrication of polyphenol biosensor based on laccase immobilized on copper nanoparticles/chitosan/multiwalled carbon nanotubes/ polyaniline-modified gold electrode, J. Biotechnol., 2011, 156, 39-45. Google Scholar

  • [63] Rahman, M. A., Noh, H.-B., Shim, Y.-B., Direct electrochemistry of laccase immobilized on Au nanoparticles encapsulateddendrimer bonded conducting polymer: application for a catechin sensor, Anal. Chem., 2008, 80, 8020-8027. Google Scholar

  • [64] Chen, X., Li, D., Li, G., Luo, L., Ullah, N., Wei, Q., Huang, F., Facile fabrication of gold nanoparticle on zein ultrafine fibers and their application for catechol biosensor, Appl. Surf. Sci., 2015, 328, 444-452. Google Scholar

  • [65] Marazuela, M., Moreno-Bondi, M., Fiber-optic biosensors – an overview, Anal. Bioanal. Chem., 2002, 372, 664-682. Google Scholar

  • [66] Zhang, Y., He, P., Hu, N., Horseradish peroxidase immobilized in TiO2 nanoparticle films on pyrolytic graphite electrodes: direct electrochemistry and bioelectrocatalysis, Electrochim. Acta, 2004, 49, 1981-1988. Google Scholar

  • [67] Zhang, L., Zhang, Q., Lu, X., Li, J., Direct electrochemistry and electrocatalysis based on film of horseradish peroxidase intercalated into layered titanate nano-sheets, Biosensors Bioelectron., 2007, 23, 102-106. CrossrefGoogle Scholar

  • [68] Xiao, P., Garcia, B. B., Guo, Q., Liu, D., Cao, G., TiO2 nanotube arrays fabricated by anodization in different electrolytes for biosensing, Electrochem. Commun., 2007, 9, 2441-2447. Google Scholar

  • [69] Viticoli, M., Curulli, A., Cusma, A., Kaciulis, S., Nunziante, S., Pandolfi, L., Valentini, F., Padeletti, G., Third-generation biosensors based on TiO2 nanostructured films, Mater. Sci. Eng., C, 2006, 26, 947-951. Google Scholar

  • [70] Zhang, F., Zheng, B., Zhang, J., Huang, X., Liu, H., Guo, S., Zhang, J., Horseradish peroxidase immobilized on graphene oxide: physical properties and applications in phenolic compound removal, J. Phys. Chem. C, 2010, 114, 8469-8473. Google Scholar

  • [71] Zhu, Y., Cao, H., Tang, L., Yang, X., Li, C., Immobilization of horseradish peroxidase in three-dimensional macroporous TiO2 matrices for biosensor applications, Electrochim. Acta, 2009, 54, 2823-2827. Google Scholar

  • [72] Yang, X., Wang, P., Zhu, Y., Li, C., Photoelectronic properties of horseradish peroxidase-functionalized CdSe/silica mesoporous composite and its sensing towards hydrogen peroxide, J. Solid State Electrochem., 2011, 15, 731-736. Google Scholar

  • [73] Kirsch, J., Siltanen, C., Zhou, Q., Revzin, A., Simonian, A., Biosensor technology: recent advances in threat agent detection and medicine, Chem. Soc. Rev., 2013, 42, 8733-8768. Google Scholar

About the article

Received: 2015-08-14

Accepted: 2015-11-17

Published Online: 2016-01-21


Citation Information: Biocatalysis, Volume 1, Issue 1, Pages 118–129, ISSN (Online) 2353-1746, DOI: https://doi.org/10.1515/boca-2015-0010.

Export Citation

© 2015 Georgette Rebollar-Pérez, et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in