Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biocatalysis

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2353-1746
See all formats and pricing
More options …

Bioreduction of fluoroacetophenone derivatives by endophytic fungi isolated from the marine red alga Bostrychia radicans

Ana Maria Mouad
  • Corresponding author
  • Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, Ed. Química Ambiental, J. Santa Angelina, 13563-120, São Carlos, São Paulo, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ana Lígia L. de Oliveira
  • Corresponding author
  • Laboratório de Química Orgânica do Ambiente Marinho, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo,Via do Café s/n, 14040-903, Ribeirão Preto, São Paulo, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hosana Maria Debonsi
  • Corresponding author
  • Laboratório de Química Orgânica do Ambiente Marinho, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo,Via do Café s/n, 14040-903, Ribeirão Preto, São Paulo, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ André Luiz Meleiro Porto
  • Corresponding author
  • Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, Ed. Química Ambiental, J. Santa Angelina, 13563-120, São Carlos, São Paulo, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-01-21 | DOI: https://doi.org/10.1515/boca-2015-0011

Abstract

Four endophytic fungi isolated from the marine red alga Bostrychia radicans identified as Botryosphaeria sp. CBMAI 1197, Eutypella sp. CBMAI 1196, Hidropisphaera sp. CBMAI 1194 and Xylaria sp. CBMAI 1195 catalyzed the asymmetric bioreduction of fluoroacetophenone derivatives 1-3 to the corresponding fluorophenylalcohols 1a-3a. In the reduction reactions of 2,2,2-trifluoro-1-phenylethanone 1, all the marine fungi produced exclusively the (S)-2,2,2-trifluoro- 1-phenylethanol 1a with > 99% ee. The fungus Botryosphaeria sp. CBMAI 1197 exhibited the best enzymatic potential, leading to the highest conversion values (up to > 99%). The biocatalyst Botryosphaeria sp. CBMAI 1197 also presented active enzymes in reactions with the substrates 1-(2-(trifluoromethyl)phenyl) ethanone (2) and 1-(2,4,5-trifluorophenyl)ethanone (3), producing the respective chiral alcohols S-2a and R-3a with > 99% ee. Additionally, the fungus Hidropisphaera sp. CBMAI 1194 yielded 100% of conversion of the ketone 3 to the corresponding S-alcohol 3a, with 53% ee.

Keywords: Marine fungi; Bostrychia radicans; Biocatalysis; Botryosphaeria sp.; Fluorinated compounds; chiral alcohols

References

  • [1] Gawley R. E. , Aubé J. Principles of Asymmetric Synthesis. 2012, 2nd Ed., 2012. Google Scholar

  • [2] Jaeger K.E., Reetz M. Directed evolution of enantioselective enzymes for organic chemistry. Curr. Opin. Chem. Biol., 2000, 4, 68-73. CrossrefGoogle Scholar

  • [3] Walker M., Chang M.C.Y. Natural and engineered biosynthesis of fluorinated natural products. Chem. Soc. Rev., 2014,43, 6527-6536. Web of ScienceCrossrefGoogle Scholar

  • [4] Xiu-de Hua, Z.; Hai-yan, S.; Liu, S.; Tian, M.; Wang, M. Enantioselective bioactivity, acute toxicity and dissipation in vegetables of the chiral triazole fungicide flutriafol. J. Hazard. Mater., 2015, 284, 65-72. Web of ScienceGoogle Scholar

  • [5] O’hagan, D. Understanding organofluorine chemistry: An introduction to the C–F bond. Chem. Soc. Rev., 2008, 37, 308-319. Google Scholar

  • [6] O´Hagan, D. Fluorine in health care: Organofluorine containing blockbuster drugs. J. Fluorine Chem., 2010, 131, 1071-1081. Google Scholar

  • [7] Hoff, B.H., Sundby, E., Preparation of pharmaceutical important fluorinated 1-arylethanols using isolated enzymes. Bioorg. Chem., 2013, 51, 31-47. Web of ScienceGoogle Scholar

  • [8] Peter Jeschke. The unique role of fluorine in the design of active ingredients for modern crop protection. ChemBioChem., 2004, 5, 570-589. CrossrefGoogle Scholar

  • [9] Lam, Y, H.; Steven, J.S.; Veronique, G. Recent progress in the use of fluoroorganic compounds in pericyclic reactions. Tetrahedron., 2009, 65, 9905-9933. CrossrefGoogle Scholar

  • [10] Nie, J., Hong-Chao, G., Cahard, D., Jum-ham, M. Asymmetric construction of stereogenic carbon centers featuring a trifluoromethyl group from prochiral trifluoromethylated substrates. Chem. Rev., 2011, 32, 455-529. Web of ScienceCrossrefGoogle Scholar

  • [11]. Bonnet-Delpon, D. Le fluor : Un élément essentiel en chimie medicinal. Ann. Pharma. Fr, 2008, 66, 56-59. CrossrefGoogle Scholar

  • [12] Ni, Y.; Xu, J. Biocatalytic ketone reduction: A green and efficient access to enantiopure alcohols. Biotech. Adv., 2012, 30, 1279-1288. Google Scholar

  • [13] Ferreira I.M., Vasconcellos S.P., Cruz J.B.C., Comasseto J.V., Porto A.L.M., Rocha L.C. Hydrogenattion of bis-α,β-unsaturated enones mediated by filamentous fungi. J. Biocatal. Agric. Biotechnol., 2015, 4, 144-149. Google Scholar

  • [14] Matsuda, T., Yamanaka, R.K., Nakamura, K. Recent progress in biocatalysis for asymmetric oxidation and reduction. Tetrahedron-Asymmetr., 2009, 20, 513-557. Web of ScienceCrossrefGoogle Scholar

  • [15] Nakamura, K., Yamanaka, R., Matsuda, T., Harada, T. Recent developments in asymmetric reduction of ketones with biocatalysts. Tetrahedron-Asymmetr., 2003, 14, 2659-2681. CrossrefGoogle Scholar

  • [16] Wang, L.J., Li, C.X., Ni, Y., Liu, X., Xu, J.H. Highly efficient synthesis of chiral alcohols with a novel NADH-dependent reductase from Streptomyces coelicolor. Biores. Technol., 2001, 102, 7023-7028. Google Scholar

  • [17] Carballeira, J.D., Quezada, M.A., Hoyos, P., Simeó, Y., Hernaiz, M.J., Hernaiz, M.J. Microbial cells as catalysts for stereoselective redox reactions. Biotechnol. Adv., 2009, 27, 686-714. CrossrefGoogle Scholar

  • [18] Goldberg, K., Schroer, K., Lutz, S., Liase, A. Biocatalytic ketonereduction- A powerful tool for the production of chiral alcohols-part II: whole-cell reductions. Appl. Microbiol. Biotechnol., 2007, 76, 249-255. Web of ScienceGoogle Scholar

  • [19] Faber, K. Biotransformations in organic chemistry. 5 th. ed. Berlin: Springer-Verlag, 2004. Google Scholar

  • [20] Grunwald, P. 2009. Biocatalysis: Biochemical Fundamental and Applications. London: Imperial College, 2009. Google Scholar

  • [21] Cao, C., Fukae, T., Yamamoto, T., Kanamaru, S., Matsuda, T. Purification and characterization of fluorinated ketone reductase from Geotrichum candidum NBRC 5767. Biochemical Eng. J., 2013, 76, 13-16. Google Scholar

  • [22] Trincone, A. Potential biocatalysts originating from sea environments. J. Mol. Catal. B-Enzym., 2010, 66, 241-256. CrossrefGoogle Scholar

  • [23] Oliveira, A. L. L., da Silva, D. B., Lopes, N. P., Debonsi, H. M. Chemical constituents from red algae Bostrychia radicans (Rhodomelaceae): new amides and phenolic compounds. Quim. Nova, 2012, 35, 2186-2188. CrossrefWeb of ScienceGoogle Scholar

  • [24] Karsten, U.L.F., Gunter, O. K. The effect of salinity on growth, photosynthesis and respiration in the estuarine red alga Bostrychia radicans. Helgolander Meresun, 1989, 43, 61-66. Google Scholar

  • [25] Mouad, A.M., Martins, M.P., Debonsi, H.M., de Oliveira, A.L.L., de Felicio, R., Yokoya, N.S. Bioreduction of acetophenone derivatives by red marine algae Bostrychia radicans, Bostrychia tenella, and marine bacteria associated. Helv. Chim. Acta., 2011, 94, 1506-1514. Web of ScienceCrossrefGoogle Scholar

  • [26] Mouad, A.M., Martins, M.P., Romminger, S., Seleghim, M.H.R., Oliveira, A.L.L., Debonsi, H.M. Bioconversion of acetophenones by marine fungi isolated from marine algae Bostrychia radicans and Sargassum sp. Curr. Top. Biotechnol., 2012, 7, 13-19. Google Scholar

  • [27] Ribeiro, S.S., Raminelli, C., Porto, A.L.M. Enzymatic resolution by CALB of organofluorine compounds under conventional condition and microwave irradiation. J. Fluorine Chem., 2013, 154, 53-59. Web of ScienceGoogle Scholar

  • [28] Kjer, J., Debbab, A., Aly, A.H., Proksch, P. Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nature Protoc., 2010, 5, 479-490. CrossrefWeb of ScienceGoogle Scholar

  • [29] Sette, L.D., Passarini, M.R.Z., Delamerlina, C., Salati, F., Duarte, M.C.T. Molecular characterization and antimicrobial activity of endophytic fungi from coffee plants. World J. Microbiol. Biotechnol., 2006, 22, 1185-1195. Web of ScienceCrossrefGoogle Scholar

  • [30] Yadav, J.S., Reddy, B.V.S., Sreelaksmi, C., Kumar, G.G.K.S., Rao, A.B. Enantioselective reduction of 2-substituted tetrahydropyran- 4-ones using Daucus carota plant cells. Tetrahedron Lett., 2008, 49, 2768-2771. Google Scholar

  • [31] Comasseto, J.V., Omori, A.T., Porto, A.L.M., Andrade, L.H., Preparation of chiral organochalcogeno-a-methylbenzyl alcohols via biocatalysis. The role of Daucus carota root. Tetrahedron Lett., 2004, 45,473-476. Google Scholar

  • [32] Kasumov, V.T., Suzergo, F.; Sahin, E., Celik, O., Aslanoglu, M. Synthesis, characterization and effect of the fluorine substitution on the redox reactivity and in vivo anticancer behaviors of N polyfluorophenyl-3,5- di-tert-butylsalicylaldimines and their Cu (II) complexes. J. Fluorine Chem., 2014, 162, 78-89. Web of ScienceGoogle Scholar

  • [33] Inoue, K., Makino, Y., Itoh, N. Production of (R)-chiral alcohols by a hydrogen-transfer bioreduction with NADH-dependent Leifsonia alcohol dehydrogenase (LSADH). Tetrahedron- Asymmetr., 2005, 16, 2539-2549. CrossrefGoogle Scholar

  • [34] Naemura, K., Murata, M., Tanaka, R., Yano, M., Hirose, K., Tobe, Y. Enantioselective acylation of alcohols catalyzed by lipase QL from Alcaligenes sp.: A predictive active site model for lipase QL to identify the faster reacting enantiomer of alcohol in this acylation. Tetrahedron-Asymmetr., 1996, 7, 1581-1584. CrossrefGoogle Scholar

  • [35] Yu, F.; Wu, Z.F.; Zhou, J.; Chan, A.S.C. Cobalt (II)-catalyzed assymmetric hydrosilylation of simple ketones using dipyridylphosphine ligands in air. Org. Biomol. Chem., 2011, 9, 5652-5654. Web of ScienceCrossrefGoogle Scholar

  • [36] Ma, J., Cahard, D. Strategies for nucleophilic, electrophilic, and radical trifluoromethylations. J. Fluorine Chem., 2007, 128, 975-996. Web of ScienceGoogle Scholar

  • [37] Kitazume, T., Yamazaki, T., Ishikawa, N. Asymmetric reductions of fluorinated ketones and keto esters with baker’s yeast. Nippon Kagakukai Shi., 1983, 1363-1368. Google Scholar

About the article

Received: 2015-11-11

Accepted: 2015-12-14

Published Online: 2016-01-21


Citation Information: Biocatalysis, Volume 1, Issue 1, Pages 141–147, ISSN (Online) 2353-1746, DOI: https://doi.org/10.1515/boca-2015-0011.

Export Citation

© 2015 Ana Maria Mouad, et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in