Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biocatalysis

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2353-1746
See all formats and pricing
More options …

Cross-linked enzyme aggregates (CLEA) in enzyme improvement – a review

Susana Velasco-Lozano
  • Corresponding author
  • Heterogeneous Biocatalysis group, CIC Biomagune, Parque Tecnológico de San Sebastián, Edificio Empresarial “C”, Paseo Miramón 182, 20009, Donostia-San Sebastián Guipúzcoa, Spain
  • Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa. Av. San Rafael Atlixco #186, Col. Vicentina 09340, D.F. México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Fernando López-Gallego
  • Corresponding author
  • Heterogeneous Biocatalysis group, CIC Biomagune, Parque Tecnológico de San Sebastián, Edificio Empresarial “C”, Paseo Miramón 182, 20009, Donostia-San Sebastián Guipúzcoa, Spain
  • Ikerbasque, Basque Foundation for Science, 48011, Bilbao, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Juan C. Mateos-Díaz
  • Corresponding author
  • Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Unidad de Biotecnología Industrial, Guadalajara, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ernesto Favela-Torres
  • Corresponding author
  • Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa. Av. San Rafael Atlixco #186, Col. Vicentina 09340, D.F. México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-02-25 | DOI: https://doi.org/10.1515/boca-2015-0012

Abstract

Structural and functional catalytic characteristics of cross-linked enzyme aggregates (CLEA) are reviewed. Firstly, advantages of enzyme immobilization and existing types of immobilization are described. Then, a wide description of the factors that modify CLEA activity, selectivity and stability is presented. Nowadays CLEA offers an economic, simple and easy tool to reuse biocatalysts, improving their catalytic properties and stability. This immobilization methodology has been widely and satisfactorily tested with a great variety of enzymes and has demonstrated its potential as a future tool to optimize biocatalytic processes.

Keywords: cross-linking; enzyme; immobilization; stabilization

References

  • [1] Andualema B., Gessesse A. Microbial lipases and their industrial applications: Review. Biotechnology, 2012,11,100-118. Google Scholar

  • [2] Bornscheuer U. T. Enzymes in lipid modification: Past achievements and current trends. Eur. J. Lipid Sci. Technol., 2014,116,1322-1331. Google Scholar

  • [3] Illanes A. Applications of microbial enzymes in organic synthesis. Biotechnology of Microbial Enzymes, 2012. p. 141-174. Google Scholar

  • [4] Singh R. K., Tiwari M. K., Singh R., Lee J. K. From protein engineering to immobilization: Promising strategies for the upgrade of industrial enzymes. International Journal of Molecular Sciences, 2013,14,1232-1277. Google Scholar

  • [5] Brena B., Batista-Viera F. Immobilization of enzymes: A literature survey. In: J. M. Guisán editor. Immobilization of enzymes and cells. Totowa NJ: Humana Press, 2006. Google Scholar

  • [6] Cao L., van Langen L., Sheldon R. A. Immobilised enzymes: Carrier-bound or carrier-free? Curr. Opin. Biotechnol., 2003,14,387-394. CrossrefGoogle Scholar

  • [7] Palomo J. M., Fernandez-Lorente G., Mateo C., Ortiz C., Fernandez-Lafuente R., Guisan J. M. Modulation of the enantioselectivity of lipases via controlled immobilization and medium engineering: Hydrolytic resolution of mandelic acid esters. Enzyme Microb. Technol., 2002,31,775-783. Google Scholar

  • [8] Palomo J. M. Modulation of enzymes selectivity via immobilization. Current Organic Synthesis, 2009,6,1-14. Google Scholar

  • [9] Mateo C., Palomo J. M., Fernandez-Lorente G., Guisan J. M., Fernandez-Lafuente R. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol., 2007,40,1451-1463. Google Scholar

  • [10] Rodrigues R. C., Ortiz C., Berenguer-Murcia A., Torres R., Fernández-Lafuente R. Modifying enzyme activity and selectivity by immobilization. Chem. Soc. Rev., 2013,42,6290-6307. CrossrefGoogle Scholar

  • [11] Cao L. Carrier-bound Immobilized Enzymes: Principles, Application and Design. 2006. p. 1-563. Google Scholar

  • [12] Hanefeld U., Gardossi L., Magner E. Understanding enzyme immobilisation. Chem. Soc. Rev., 2009,38,453-468. CrossrefGoogle Scholar

  • [13] Palomo J. M., Segura R. L., Fernandez-Lorente G., Fernandez- Lafuente R., Guisán J. M. Glutaraldehyde modification of lipases adsorbed on aminated supports: A simple way to improve their behaviour as enantioselective biocatalyst. Enzyme Microb. Technol., 2007,40,704-707. Google Scholar

  • [14] Brady D., Jordaan J. Advances in enzyme immobilisation. Biotechnol. Lett., 2009,31,1639-1650. CrossrefGoogle Scholar

  • [15] Matsumoto M., Ohashi K. Effect of immobilization on thermostability of lipase from Candida rugosa. Biochem. Eng. J., 2003,14,75-77. CrossrefGoogle Scholar

  • [16] Raviyan P., Tang J., Rasco B. A. Thermal stability of α-amylase from Aspergillus oryzae entrapped in polyacrylamide gel. J. Agric. Food Chem., 2003,51,5462-5466. CrossrefGoogle Scholar

  • [17] Mazurenko I., Ghach W., Kohring G.-W., Despas C., Walcarius A., Etienne M. Immobilization of membrane-bounded (S)-mandelate dehydrogenase in sol–gel matrix for electroenzymatic synthesis. Bioelectrochemistry, 2015,104,65-70. CrossrefGoogle Scholar

  • [18] Cao L. Covalent Enzyme Immobilization. In: L. Cao editor. Carrier-bound immobilized enzymes, Principles, Applications and Design. The Netherlands: WILEY-VCH Verlag GmbH & Co, 2006. p. 169-293. Google Scholar

  • [19] Mateo C., Grazú V., Pessela B. C. C., Montes T., Palomo J. M., Torres R., López-Gallego F., Fernández-Lafuente R., Guisán J. M. Advances in the design of new epoxy supports for enzyme immobilization-stabilization. Biochem. Soc. Trans., 2007,35,1593-1601. CrossrefGoogle Scholar

  • [20] Sheldon R. A. Cross-linked enzyme aggregates as industrial biocatalysts. Org. Process Res. Dev., 2011,15,213-223. CrossrefGoogle Scholar

  • [21] Talekar S., Joshi A., Joshi G., Kamat P., Haripurkar R., Kambale S. Parameters in preparation and characterization of cross linked enzyme aggregates (CLEAs). RSC Advances, 2013,3,12485-12511. Google Scholar

  • [22] Sheldon R. A. Cross-linked enzyme aggregates (CLEA®s): Stable and recyclable biocatalysts. Biochem. Soc. Trans., 2007,35,1583-1587. CrossrefGoogle Scholar

  • [23] Illanes A., Wilson L., Aguirre C. Synthesis of cephalexin in aqueous medium with carrier-bound and carrier-free penicillin acylase biocatalysts. Appl. Biochem. Biotechnol., 2009,157,98-110. Google Scholar

  • [24] Garcia-Galan C., Berenguer-Murcia A., Fernandez-Lafuente R., Rodrigues R. C. Potential of different enzyme immobilization strategies to improve enzyme performance. Adv. Synth. Catal., 2011,353,2885-2904. Google Scholar

  • [25] Quiocho F. A., Richards F. M. The enzymic behavior of carboxypeptidase-A in the solid state. Biochemistry (Mosc). 1966,5,4062-4076. CrossrefGoogle Scholar

  • [26] Quiocho F. A., Richards F. M. Intermolecular cross linking of a protein in the crystalline state Proceedings of the National Academy of Sciences of the United States of, 1964,52,833-839. Google Scholar

  • [27] Sheldon R. A. Enzyme immobilization: The quest for optimum performance. Adv. Synth. Catal., 2007,349,1289-1307. Google Scholar

  • [28] Thomas D., Bourdillon C., Broun G., Kernevez J. P. Kinetic behavior of enzymes in artificial membranes. Inhibition and reversibility effects. Biochemistry (Mosc). 1974,13,2995-3000. CrossrefGoogle Scholar

  • [29] Broun G., Selegny E., Avrameas S., Thomas D. Enzymatically active membranes: Some properties of cellophane membranes supporting cross-linked enzymes. BBA - Enzymology, 1969,185,260-262. Google Scholar

  • [30] Khare S. K., Vaidya S., Gupta M. N. Entrapment of proteins by aggregation within sephadex beads. Appl. Biochem. Biotechnol., 1991,27,205-216. CrossrefGoogle Scholar

  • [31] St. Clair N. L., Navia M. A. Cross-linked enzyme crystals as robust biocatalysts. J. Am. Chem. Soc., 1992,114,7314-7316. Google Scholar

  • [32] Gogoi P., Hazarika S., Dutta N. N., Rao P. G. Kinetics and mechanism on laccase catalyzed synthesis of poly(allylamine)– catechin conjugate. Chem. Eng. J., 2010,163,86-92. Google Scholar

  • [33] Roy J. J., Abraham T. E. Preparation and characterization of cross-linked enzyme crystals of laccase. J. Mol. Catal. B: Enzym., 2006,38,31-36. CrossrefGoogle Scholar

  • [34] Hetrick E. M., Sperry D. C., Nguyen H. K., Strege M. A. Characterization of a novel cross-linked lipase: Impact of cross-linking on solubility and release from drug product. Mol. Pharm., 2014,11,1189-1200. CrossrefGoogle Scholar

  • [35] Brady D., Steenkamp L., Skein E., Chaplin J. A., Reddy S. Optimisation of the enantioselective biocatalytic hydrolysis of naproxen ethyl ester using ChiroCLEC-CR. Enzyme Microb. Technol., 2004,34,283-291. Google Scholar

  • [36] Sheldon R. A., Van Pelt S. Enzyme immobilisation in biocatalysis: Why, what and how. Chem. Soc. Rev., 2013,42,6223-6235. CrossrefGoogle Scholar

  • [37] Cao L., Van Rantwijk F., Sheldon R. A. Cross-linked enzyme aggregates: A simple and effective method for the immobilization of penicillin acylase. Org. Lett., 2000,2,1361-1364. CrossrefGoogle Scholar

  • [38] Tischer W., Kasche V. Immobilized enzymes: Crystals or carriers? Trends Biotechnol., 1999,17,326-335. CrossrefGoogle Scholar

  • [39] Toral A. R., de los Ríos A. P., Hernández F. J., Janssen M. H. A., Schoevaart R., van Rantwijk F., Sheldon R. A. Cross-linked Candida antarctica lipase B is active in denaturing ionic liquids. Enzyme Microb. Technol., 2007,40,1095-1099. Google Scholar

  • [40] Alagöz D., Tükel S. S., Yildirim D. Enantioselective Synthesis of Various Cyanohydrins Using Covalently Immobilized Preparations of Hydroxynitrile Lyase from Prunus dulcis. Appl. Biochem. Biotechnol., 2015. Google Scholar

  • [41] Zhou Z., Piepenbreier F., Marthala V. R. R., Karbacher K., Hartmann M. Immobilization of lipase in cage-type mesoporous organosilicas via covalent bonding and crosslinking. Catal. Today, 2015,243,173-183. Google Scholar

  • [42] Sheldon R. A., van Pelt S., Kanbak-Aksu S., Rasmussen J. A., Janssen M. H. A. Cross-linked enzyme aggregates (CLEAs) in organic synthesis. Aldrichimica Acta, 2013,46,81-93. Google Scholar

  • [43] Illanes A., Wilson L., Caballero E., Fernández-Lafuente R., Guisán J. M. Crosslinked penicillin acylase aggregates for synthesis of β-lactam antibiotics in organic medium. Appl. Biochem. Biotechnol., 2006,133,189-202. Google Scholar

  • [44] Roessl U., Nahálka J., Nidetzky B. Carrier-free immobilized enzymes for biocatalysis. Biotechnol. Lett., 2010,32,341-350. CrossrefGoogle Scholar

  • [45] Roberge C., Amos D., Pollard D., Devine P. Preparation and application of cross-linked aggregates of chloroperoxidase with enhanced hydrogen peroxide tolerance. J. Mol. Catal. B: Enzym., 2009,56,41-45. CrossrefGoogle Scholar

  • [46] Kartal F., Janssen M. H. A., Hollmann F., Sheldon R. A., Kilinc A. Improved esterification activity of Candida rugosa lipase in organic solvent by immobilization as Cross-linked enzyme aggregates (CLEAs). J. Mol. Catal. B: Enzym., 2011,71,85-89. CrossrefGoogle Scholar

  • [47] Sheldon R. A. Characteristic features and biotechnological applications of cross-linked enzyme aggregates (CLEAs). Appl. Microbiol. Biotechnol., 2011,92,467-477. CrossrefGoogle Scholar

  • [48] Montoro-García S., Gil-Ortiz F., Navarro-Fernández J., Rubio V., García-Carmona F., Sánchez-Ferrer A. Improved cross-linked enzyme aggregates for the production of desacetyl β-lactam antibiotics intermediates. Bioresour. Technol., 2010,101,331-336. CrossrefGoogle Scholar

  • [49] Yu H. W., Chen H., Wang X., Yang Y. Y., Ching C. B. Cross-linked enzyme aggregates (CLEAs) with controlled particles: Application to Candida rugosa lipase. J. Mol. Catal. B: Enzym., 2006,43,124-127. CrossrefGoogle Scholar

  • [50] Schoevaart R., Wolbers M. W., Golubovic M., Ottens M., Kieboom A. P. G., Van Rantwijk F., Van Der Wielen L. A. M., Sheldon R. A. Preparation, optimization, and structures, of cross-linked enzyme aggregates (CLEAs). Biotechnol. Bioeng., 2004,87,754-762. CrossrefGoogle Scholar

  • [51] Aytar B. S., Bakir U. Preparation of cross-linked tyrosinase aggregates. Process Biochem., 2008,43,125-131. CrossrefGoogle Scholar

  • [52] García-García M. I., Sola-Carvajal A., Sánchez-Carrón G., García-Carmona F., Sánchez-Ferrer Á. New stabilized FastPrep-CLEAs for sialic acid synthesis. Bioresour. Technol., 2011,102,6186-6191. CrossrefGoogle Scholar

  • [53] Wang M., Jia C., Qi W., Yu Q., Peng X., Su R., He Z. Porous-CLEAs of papain: Application to enzymatic hydrolysis of macromolecules. Bioresour. Technol., 2011,102,3541-3545. CrossrefGoogle Scholar

  • [54] Mateo C., Palomo J. M., Van Langen L. M., Van Rantwijk F., Sheldon R. A. A New, Mild Cross-Linking Methodology to Prepare Cross-Linked Enzyme Aggregates. Biotechnol. Bioeng., 2004,86,273-276. CrossrefGoogle Scholar

  • [55] Valdés E. C., Soto L. W., Arcaya G. A. Influence of the pH of glutaraldehyde and the use of dextran aldehyde on the preparation of cross-linked enzyme aggregates (CLEAs) of lipase from Burkholderia cepacia. Electron. J. Biotechnol. vol. 14; 2011. Google Scholar

  • [56] Miletić N., Loos K. Over-Stabilization of Chemically Modified and Cross-Linked Candida antarctica Lipase B Using Various Epoxides and Diepoxides. Aust. J. Chem., 2009,62,799-805. CrossrefGoogle Scholar

  • [57] Wang A., Zhang F., Chen F., Wang M., Li H., Zeng Z., Xie T., Chen Z. A facile technique to prepare cross-linked enzyme aggregates using p-benzoquinone as cross-linking agent. Korean J. Chem. Eng., 2011,28,1090-1095. Google Scholar

  • [58] Ayhan H., Ayhan F., Gülsu A. Highly biocompatible enzyme aggregates crosslinked by L-lysine. Turkish Journal of Biochemistry, 2012,37,14-20. Google Scholar

  • [59] Talekar S., Nadar S., Joshi A., Joshi G. Pectin cross-linked enzyme aggregates (pectin-CLEAs) of glucoamylase. RSC Advances, 2014,4,59444-59453. Google Scholar

  • [60] Arsenault A., Cabana H., Jones J. P. Laccase-based CLEAs: Chitosan as a novel cross-linking agent. Enzyme Research, 2011,2011,art. no. 376015. Google Scholar

  • [61] Velasco-Lozano S., López-Gallego F., Vázquez-Duhalt R., Mateos-Díaz J. C., Guisán J. M., Favela-Torres E. Carrier-free immobilization of lipase from Candida rugosa with polyethyleneimines by carboxyl-activated cross-linking. Biomacromolecules, 2014,15,1896-1903. CrossrefGoogle Scholar

  • [62] Galvis M., Barbosa O., Ruiz M., Cruz J., Ortiz C., Torres R., Fernandez-Lafuente R. Chemical amination of lipase B from Candida antarctica is an efficient solution for the preparation of crosslinked enzyme aggregates. Process Biochem., 2012,47,2373-2378. CrossrefGoogle Scholar

  • [63] Wilson L., Illanes A., Soler L., Henríquez M. J. Effect of the degree of cross-linking on the properties of different CLEAs of penicillin acylase. Process Biochem., 2009,44,322-326. CrossrefGoogle Scholar

  • [64] Majumder A. B., Mondal K., Singh T. P., Gupta M. N. Designing cross-linked lipase aggregates for optimum performance as biocatalysts. Biocatal. Biotransform., 2008,26,235-242. CrossrefGoogle Scholar

  • [65] Cruz J., Barbosa O., Rodrigues R. C., Fernandez-Lafuente R., Torres R., Ortiz C. Optimized preparation of CALB-CLEAs by response surface methodology: The necessity to employ a feeder to have an effective crosslinking. J. Mol. Catal. B: Enzym., 2012,80,7-14. CrossrefGoogle Scholar

  • [66] Kim M. H., Park S., Kim Y. H., Won K., Lee S. H. Immobilization of formate dehydrogenase from Candida boidinii through cross-linked enzyme aggregates. J. Mol. Catal. B: Enzym., 2013,97,209-214. CrossrefGoogle Scholar

  • [67] Yang X., Zheng P., Ni Y., Sun Z. Highly efficient biosynthesis of sucrose-6-acetate with cross-linked aggregates of Lipozyme TL 100 L. J. Biotechnol., 2012,161,27-33. Google Scholar

  • [68] Wine Y., Cohen-Hadar N., Freeman A., Frolow F. Elucidation of the mechanism and end products of glutaraldehyde crosslinking reaction by X-ray structure analysis. Biotechnol. Bioeng., 2007,98,711-718. CrossrefGoogle Scholar

  • [69] Cui J. D., Jia S. R. Optimization protocols and improved strategies of cross-linked enzyme aggregates technology: Current development and future challenges. Crit. Rev. Biotechnol., 2015,35,15-28. CrossrefGoogle Scholar

  • [70] López-Serrano P., Cao L., Van Rantwijk F., Sheldon R. A. Cross-linked enzyme aggregates with enhanced activity: Application to lipases. Biotechnol. Lett., 2002,24,1379-1383. CrossrefGoogle Scholar

  • [71] Pchelintsev N. A., Youshko M. I., Švedas V. K. Quantitative characteristic of the catalytic properties and microstructure of cross-linked enzyme aggregates of penicillin acylase. J. Mol. Catal. B: Enzym., 2009,56,202-207. CrossrefGoogle Scholar

  • [72] Wang M., Qi W., Jia C., Ren Y., Su R., He Z. Enhancement of activity of cross-linked enzyme aggregates by a sugar-assisted precipitation strategy: Technical development and molecular mechanism. J. Biotechnol., 2011,156,30– 38. Google Scholar

  • [73] Gupta P., Dutt K., Misra S., Raghuwanshi S., Saxena R. K. Characterization of cross-linked immobilized lipase from thermophilic mould Thermomyces lanuginosa using glutaraldehyde. Bioresour. Technol., 2009,100,4074-4076. CrossrefGoogle Scholar

  • [74] Wilson L., Fernández-Lorente G., Fernández-Lafuente R., Illanes A., Guisán J. M., Palomo J. M. CLEAs of lipases and poly-ionic polymers: A simple way of preparing stable biocatalysts with improved properties. Enzyme Microb. Technol., 2006,39,750-755. Google Scholar

  • [75] Theil F. Enhancement of selectivity and reactivity of lipases by additives. Tetrahedron, 2000,56,2905-2919. CrossrefGoogle Scholar

  • [76] Yamaguchi H., Miyazaki M., Asanomi Y., Maeda H. Poly-lysine supported cross-linked enzyme aggregates with efficient enzymatic activity and high operational stability. Catal. Sci. Technol., 2011,1,1256-1261. CrossrefGoogle Scholar

  • [77] López-Gallego F., Betancor L., Hidalgo A., Alonso N., Fernández- Lafuente R., Guisán J. M. Co-aggregation of enzymes and polyethyleneimine: A simple method to prepare stable and immobilized derivatives of glutaryl acylase. Biomacromolecules, 2005,6,1839-1842. CrossrefGoogle Scholar

  • [78] Montes T., Grazú V., Manso I., Galán B., López-Gallego F., González R., Hermoso J. A., García J. L., Guisán J. M., Fernández-Lafuente R. Improved stabilization of genetically modified penicillin G acylase in the presence of organic cosolvents by co-immobilization of the enzyme with polyethyleneimine. Adv. Synth. Catal., 2007,349,459-464. Google Scholar

  • [79] Pan J., Kong X. D., Li C. X., Ye Q., Xu J. H., Imanaka T. Crosslinking of enzyme coaggregate with polyethyleneimine: A simple and promising method for preparing stable biocatalyst of Serratia marcescens lipase. J. Mol. Catal. B: Enzym., 2011,68,256-261. CrossrefGoogle Scholar

  • [80] Shah S., Sharma A., Gupta M. N. Preparation of cross-linked enzyme aggregates by using bovine serum albumin as a proteic feeder. Anal. Biochem., 2006,351,207-213. Google Scholar

  • [81] Cabana H., Jones J. P., Agathos S. N. Preparation and characterization of cross-linked laccase aggregates and their application to the elimination of endocrine disrupting chemicals. J. Biotechnol., 2007,132,23-31. Google Scholar

  • [82] Cui J. D., Liu R. L., Li L. L. Imprinted cross-linked enzyme aggregate (iCLEA) of phenylalanine ammonia lyase: A new stable biocatalyst. Lecture Notes in Electrical Engineering vol. 332; 2015. p. 223-231. Google Scholar

  • [83] Bommarius A. S., Paye M. F. Stabilizing biocatalysts. Chem. Soc. Rev., 2013,42,6534-6565. CrossrefGoogle Scholar

  • [84] Dong T., Zhao L., Huang Y., Tan X. Preparation of cross-linked aggregates of aminoacylase from Aspergillus melleus by using bovine serum albumin as an inert additive. Bioresour. Technol., 2010,101,6569-6571. CrossrefGoogle Scholar

  • [85] Kopp W., Da Costa T. P., Pereira S. C., Jafelicci Jr M., Giordano R. C., Marques R. F. C., Araújo-Moreira F. M., Giordano R. L. C. Easily handling penicillin G acylase magnetic cross-linked enzymes aggregates: Catalytic and morphological studies. Process Biochem., 2014,49,38-46. CrossrefGoogle Scholar

  • [86] Yan J., Gui X., Wang G., Yan Y. Improving stability and activity of cross-linked enzyme aggregates based on polyethylenimine in hydrolysis of fish oil for enrichment of polyunsaturated fatty acids. Appl. Biochem. Biotechnol., 2012,166,925-932. Google Scholar

  • [87] Tandjaoui N., Tassist A., Abouseoud M., Couvert A., Amrane A. Preparation and characterization of cross-linked enzyme aggregates (CLEAs) of Brassica rapa peroxidase. Biocatalysis and Agricultural Biotechnology, 2015,4,208-213. Google Scholar

  • [88] Dinh T. H., Jang N. Y., McDonald K. A., Won K. Cross-linked aggregation of glutamate decarboxylase to extend its activity range toward alkaline pH. J. Chem. Technol. Biotechnol., 2015. Google Scholar

  • [89] Sheldon R. A. 9.15 Industrial Applications of Asymmetric Synthesis using Cross-Linked Enzyme Aggregates. Comprehensive Chirality vol. 9, 2012. p. 353-366. Google Scholar

  • [90] Vaidya B. K., Kuwar S. S., Golegaonkar S. B., Nene S. N. Preparation of cross-linked enzyme aggregates of l-aminoacylase via co-aggregation with polyethyleneimine. J. Mol. Catal. B: Enzym., 2012,74,184-191. CrossrefGoogle Scholar

  • [91] Gupta K., Jana A. K., Kumar S., Jana M. M. Solid state fermentation with recovery of Amyloglucosidase from extract by direct immobilization in cross linked enzyme aggregate for starch hydrolysis. Biocatalysis and Agricultural Biotechnology, 2015. Google Scholar

  • [92] Skovgaard J., Bak C. A., Snabe T., Sutherland D. S., Laursen B. S., Kragh K. M., Besenbacher F., Poulsen C. H., Shipovskov S. Implementation of cross-linked enzyme aggregates of proteases for marine paint applications. J. Mater. Chem., 2010,20,7626-7629. CrossrefGoogle Scholar

  • [93] Martínez Y. N., Cavello I., Cavalitto S., Illanes A., Castro G. R. Studies on PVA pectin cryogels containing crosslinked enzyme aggregates of keratinase. Colloids Surf. B. Biointerfaces, 2014,117,284-289. CrossrefGoogle Scholar

  • [94] Park J.-M., Kim M., Park H.-S., Jang A., Min J., Kim Y.-H. Immobilization of lysozyme-CLEA onto electrospun chitosan nanofiber for effective antibacterial applications. Int. J. Biol. Macromol., 2013,54,37-43. CrossrefGoogle Scholar

  • [95] Liu Y., Guo C., Liu C. Z. Enhancing the resolution of (R,S)-2-octanol catalyzed by magnetic cross-linked lipase aggregates using an alternating magnetic field. Chem. Eng. J., 2015,280,36-40. Google Scholar

  • [96] Muschiol J., Peters C., Oberleitner N., Mihovilovic M. D., Bornscheuer U. T., Rudroff F. Cascade catalysis-strategies and challenges en route to preparative synthetic biology. Chem. Commun., 2015,51,5798-5811. CrossrefGoogle Scholar

  • [97] Chmura A., Rustler S., Paravidino M., van Rantwijk F., Stolz A., Sheldon R. A. The combi-CLEA approach: enzymatic cascade synthesis of enantiomerically pure (S)-mandelic acid. Tetrahedron: Asymmetry, 2013,24,1225-1232. CrossrefGoogle Scholar

  • [98] Mateo C., Chmura A., Rustler S., Van Rantwijk F., Stolz A., Sheldon R. A. Synthesis of enantiomerically pure (S)-mandelic acid using an oxynitrilase-nitrilase bienzymatic cascade: A nitrilase surprisingly shows nitrile hydratase activity. Tetrahedron-Asymmetr, 2006,17,320-323. CrossrefGoogle Scholar

  • [99] Dalal S., Sharma A., Gupta M. N. A multipurpose immobilized biocatalyst with pectinase, xylanase and cellulase activities. Chemistry Central Journal, 2007,1. Google Scholar

  • [100] Vafiadi C., Topakas E., Christakopoulos P. Preparation of multipurpose cross-linked enzyme aggregates and their application to production of alkyl ferulates. J. Mol. Catal. B: Enzym., 2008,54,35–41. CrossrefGoogle Scholar

  • [101] Ba S., Haroune L., Cruz-Morató C., Jacquet C., Touahar I. E., Bellenger J. P., Legault C. Y., Jones J. P., Cabana H. Synthesis and characterization of combined cross-linked laccase and tyrosinase aggregates transforming acetaminophen as a model phenolic compound in wastewaters. Sci. Total Environ., 2014,487,748-755. Google Scholar

  • [102] Van Pelt S., Van Rantwijk F., Sheldon R. A. Synthesis of aliphatic (S)-α-hydroxycarboxylic amides using a one-pot bienzymatic cascade of immobilised oxynitrilase and nitrile hydratase. Adv. Synth. Catal., 2009,351,397-404. Google Scholar

  • [103] Van Rantwijk F., Stolz A. Enzymatic cascade synthesis of (S)-2-hydroxycarboxylic amides and acids: Cascade reactions employing a hydroxynitrile lyase, nitrile-converting enzymes and an amidase. J. Mol. Catal. B: Enzym., 2015,114,25-30. CrossrefGoogle Scholar

  • [104] Wilson L., Illanes A., Pessela B. C. C., Abian O., Fernández- Lafuente R., Guisán J. M. Encapsulation of crosslinked penicillin G acylase aggregates in lentikats: Evaluation of a novel biocatalyst in organic media. Biotechnol. Bioeng., 2004,86,558-562. CrossrefGoogle Scholar

  • [105] Moon I. K., Kim J., Lee J., Jia H., Hyon B. N., Jong K. Y., Ja H. K., Dohnalkova A., Grate J. W., Wang P., et al. Crosslinked enzyme aggregates in hierarchically-ordered mesoporous silica: A simple and effective method for enzyme stabilization. Biotechnol. Bioeng., 2007,96,210-218. Google Scholar

  • [106] Talekar S., Ghodake V., Ghotage T., Rathod P., Deshmukh P., Nadar S., Mulla M., Ladole M. Novel magnetic cross-linked enzyme aggregates (magnetic CLEAs) of alpha amylase. Bioresour. Technol., 2012,123,542-547. Google Scholar

  • [107] Tudorache M., Nae A., Coman S., Parvulescu V. I. Strategy of cross-linked enzyme aggregates onto magnetic particles adapted to the green design of biocatalytic synthesis of glycerol carbonate. RSC Advances, 2013,3,4052-4058. Google Scholar

  • [108] Lee J., Na H. B., Kim B. C., Lee J. H., Lee B., Kwak J. H., Hwang Y., Park J. G., Gu M. B., Kim J., et al. Magnetically-separable and highly-stable enzyme system based on crosslinked enzyme aggregates shipped in magnetite-coated mesoporous silica. J. Mater. Chem., 2009,19,7864-7870. CrossrefGoogle Scholar

  • [109] Hilal N., Nigmatullin R., Alpatova A. Immobilization of cross-linked lipase aggregates within microporous polymeric membranes. J. Membr. Sci., 2004,238,131-141. Google Scholar

  • [110] Sorgedrager M. J., Verdoes D., Van Der Meer H., Sheldon R. A. Chim Oggi, 2008,26,23-25. Google Scholar

  • [111] Miyazaki M., Maeda H. Microchannel enzyme reactors and their applications for processing. Trends Biotechnol., 2006,24,463-470. CrossrefGoogle Scholar

  • [112] Cabana H., Jones J. P., Agathos S. N. Utilization of cross-linked laccase aggregates in a perfusion basket reactor for the continuous elimination of endocrine-disrupting chemicals. Biotechnol. Bioeng., 2009,102,1582-1592. CrossrefGoogle Scholar

  • [113] Wilson L., Illanes A., Romero O., Vergara J., Mateo C. Carrierbound and carrier-free penicillin acylase biocatalysts for the thermodynamically controlled synthesis of β-lactam compounds in organic medium. Enzyme Microb. Technol., 2008,43,442-447. Google Scholar

About the article

Received: 2015-09-17

Accepted: 2015-11-25

Published Online: 2016-02-25


Citation Information: Biocatalysis, Volume 1, Issue 1, Pages 166–177, ISSN (Online) 2353-1746, DOI: https://doi.org/10.1515/boca-2015-0012.

Export Citation

© 2016 Susana Velasco-Lozano et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Anastasia Zerva, Io Antonopoulou, Josefine Enman, Laura Iancu, Ulrika Rova, and Paul Christakopoulos
Catalysts, 2018, Volume 8, Number 5, Page 208
[3]
Roger A. Sheldon
ACS Sustainable Chemistry & Engineering, 2018
[4]
Xuejia Shi, Linguo Zhao, Jianjun Pei, Lin Ge, Pengwei Wan, Zhenzhong Wang, and Wei Xiao
Process Biochemistry, 2018
[5]
J.S. Hero, C.M. Romero, J.H. Pisa, N.I. Perotti, C. Olivaro, and M.A. Martinez
International Journal of Biological Macromolecules, 2018
[6]
Roger A. Sheldon and John M. Woodley
Chemical Reviews, 2017
[7]
Ana-Belén Martínez-Moñino, Rubén Zapata-Pérez, Antonio-Ginés García-Saura, Juana Cabanes, and Álvaro Sánchez-Ferrer
RSC Adv., 2017, Volume 7, Number 23, Page 14272
[8]
Jiandong Cui, Yamin Zhao, Yuxiao Feng, Tao Lin, Cheng Zhong, Zhilei Tan, and Shiru Jia
Journal of Agricultural and Food Chemistry, 2017, Volume 65, Number 3, Page 618

Comments (0)

Please log in or register to comment.
Log in