Jump to ContentJump to Main Navigation
Show Summary Details
More options …


1 Issue per year

Open Access
See all formats and pricing
More options …

Medium-engineering: a useful tool for modulating lipase activity and selectivity

Edmundo Castillo
  • Corresponding author
  • Departamento Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Mor. 62250, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Leticia Casas-Godoy
  • Corresponding author
  • Industrial Biotechnology Unit, CIATEJ, Av. Normalistas 800, 44270 Guadalajara, Jal. México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Georgina Sandoval
  • Corresponding author
  • Industrial Biotechnology Unit, CIATEJ, Av. Normalistas 800, 44270 Guadalajara, Jal. México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-04-07 | DOI: https://doi.org/10.1515/boca-2015-0013


The design of a specific reaction medium capable to enhance activity, stability, and productivity of biocatalysts has been a recurring topic of study during the last three decades. The remarkable properties and valuable applications of enzymes, especially lipases, have inspiried different strategies for improving their performance in near-anhydrous media. As lipases are the most frequently used enzymes in organic synthesis, understanding the influence of reaction media on their activity and selectivity is crucial. In this paper, we review the key features of lipases and demonstrate how medium-engineering is a useful tool to modulate the activity and selectivity of lipase-catalyzed reactions.

Keywords: Lipase; non-aqueous media; mediumengineering; selectivity


  • [1] Zimmerman R.L., Cornovale J., Shaw S., World Enzymes, BCC, 2014. Google Scholar

  • [2] Casas-Godoy L., Duquesne S., Bordes F., Sandoval G., Marty A., Godoy L.C., Lipases: An Overview, In: Sandoval G., (Ed.), Lipases and Phospholipases, Humana Press, 2012, 3-30. Google Scholar

  • [3] Vakhlu J., Kour A., Yeast lipases: enzyme purification, biochemical properties and gene cloning, Electron. J. Biotechnol., 2006, 9, 69-85. CrossrefGoogle Scholar

  • [4] Laane C., Medium-engineering for bio-organic synthesis, Biocatal. Biotransform., 1987, 1, 17-22. Google Scholar

  • [5] Todd A.E., Orengo C.A., Thornton J.M., Evolution of function in protein superfamilies, from a structural perspective, J. Mol. Biol., 2001, 307, 1113-1143. Google Scholar

  • [6] Widmann M., Juhl P.B., Pleiss J., Structural classification by the Lipase Engineering Database: a case study of Candida antarctica lipase A, BMC Genomics, 2010, 11, 123. CrossrefGoogle Scholar

  • [7] Brady L., Brzozowski A.M., Derewenda Z.S., Dodson E., Dodson G., Tolley S., Turkenburg J.P., Christiansen L., Huge-Jensen B., Norskov L., A serine protease triad forms the catalytic centre of a triacylglycerol lipase, Nature, 1990, 343, 767-770. Google Scholar

  • [8] Fischer M., Thai Q.K., Grieb M., Pleiss J., DWARF-a data warehouse system for analyzing protein families, BMC Bioinformatics, 2006, 7, 495. CrossrefGoogle Scholar

  • [9] Pleiss J., Fischer M., Peiker M., Thiele C., Schmid R.D., Lipase engineering database: understanding and exploiting sequence–structure–function relationships, J. Mol. Catal. B-Enzym., 2000, 491-508. CrossrefGoogle Scholar

  • [10] Brzozowski A.M., Savage H., Verma C.S., Turkenburg J.P., Lawson D.M., Svendsen A., Patkar S., Structural origins of the interfacial activation in Thermomyces (Humicola) lanuginosa lipase, Biochemistry, 2000, 39, 15071-15082. CrossrefGoogle Scholar

  • [11] Reis P., Holmberg K., Watzke H., Leser M.E., Miller R., Lipases at interfaces: a review, Adv. Colloid Interface Sci., 2009, 147-148, 237-250. Google Scholar

  • [12] Derewenda U., Brzozowski A.M., Lawson D.M., Derewenda Z.S., Catalysis at the interface: the anatomy of a conformational change in a triglyceride lipase, Biochemistry, 1992, 31, 1532-1541. CrossrefGoogle Scholar

  • [13] Brzozowski A.M., Derewenda Z.S., Dodson E.J., Dodson G.G., Turkenburg J.P., Structure and molecular model refinement of Rhizomucor miehei triacyglyceride lipase: a case study of the use of simulated annealing in partial model refinement, Acta Crystallogr. Sect. B-Struct. Sci.Cryst. Eng. Mat., 1992, 48, 307-319. CrossrefGoogle Scholar

  • [14] Cai J.-F., Guan Z., He Y.-H., The lipase-catalyzed asymmetric C–C Michael addition, 2011, 68, 240-244. Google Scholar

  • [15] Priego J., Ortíz-Nava C., Carrillo-Morales M., López-Munguía A., Escalante J., Castillo E., Solvent engineering: an effective tool to direct chemoselectivity in a lipase-catalyzed Michael addition, Tetrahedron, 2009, 65, 536-539. Google Scholar

  • [16] Carboni-Oerlemans C., Domínguez de María P., Tuin B., Bargeman G., van der Meer A., van Gemert R., Hydrolasecatalysed synthesis of peroxycarboxylic acids: Biocatalytic promiscuity for practical applications, 2006, 126, 140-151. Google Scholar

  • [17] Pleiss J., Fischer M., Schmid R.D., Anatomy of lipase binding sites: the scissile fatty acid binding site, Chem. Phys. Lipids, 1998, 93, 67-80. CrossrefGoogle Scholar

  • [18] Adlercreutz P., Immobilisation and application of lipases in organic media, Chem. Soc. Rev., 2013, 42, 6406-6436. CrossrefGoogle Scholar

  • [19] Sandoval G., Condoret J.S., Monsan P., Marty A., Esterification by immobilized lipase in solvent-free media: Kinetic and thermodynamic arguments, Biotechnol. Bioeng., 2002, 78, 313-320. Google Scholar

  • [20] Fan X., Niehus X., Sandoval G., Lipases as Biocatalyst for Biodiesel Production, In: Sandoval G. (Ed.), Lipases and Phospholipases, Humana Press, 2012, 471-483. Google Scholar

  • [21] Graber M., Irague R., Rosenfeld E., Lamare S., Franson L., Hult K., Solvent as a competitive inhibitor for Candida antarctica lipase B, BBA-Proteins Proteomics, 2007, 1774, 1052-1057. Google Scholar

  • [22] Colombié S., Tweddell R.J., Condoret J.-S., Marty A., Water activity control: A way to improve the efficiency of continuous lipase esterification, Biotechnol. Bioeng., 1998, 60, 362-368. Google Scholar

  • [23] Barbe S., Lafaquière V., Guieysse D., Monsan P., Remaud- Siméon M., André I., Insights into lid movements of Burkholderia cepacia lipase inferred from molecular dynamics simulations, Proteins, 2009, 77, 509-523. CrossrefGoogle Scholar

  • [24] Peters G.H., van Aalten D.M., Edholm O., Toxvaerd S., Bywater R., Dynamics of proteins in different solvent systems: analysis of essential motion in lipases, Biophys. J., 1996, 71, 2245-2255. Google Scholar

  • [25] Norin M., Haeffner F., Hult K., Edholm O., Molecular dynamics simulations of an enzyme surrounded by vacuum, water, or a hydrophobic solvent, Biophys. J., 1994, 67, 548-559. Google Scholar

  • [26] Trodler P., Pleiss J., Modeling structure and flexibility of Candida antarctica lipase B in organic solvents, BMC Struct. Biol., 2008, 8-9. CrossrefGoogle Scholar

  • [27] Li C., Tan T., Zhang H., Feng W., Analysis of the conformational stability and activity of Candida antarctica lipase B in organic solvents: insight from molecular dynamics and quantum mechanics/simulations, J. Biol. Chem., 2010, 285, 28434-28441. Google Scholar

  • [28] Gorman L.A., Dordick J.S., Organic solvents strip water off enzymes, Biotechnol. Bioeng., 1992, 39, 392-397. CrossrefGoogle Scholar

  • [29] Madeira Lau R., van Rantwijk F., Seddon K.R., Sheldon R.A., Lipase-catalyzed reactions in ionic liquids, Org. Lett., 2000, 2, 4189-4191. CrossrefGoogle Scholar

  • [30] Nara S.J., Harjani J.R., Salunkhe M.M., Lipase-catalysed transesterification in ionic liquids and organic solvents: A comparative study, Tetrahedron Lett., 2002, 43, 2979-2982. CrossrefGoogle Scholar

  • [31] Su E., Wei D., Improvement in lipase-catalyzed methanolysis of triacylglycerols for biodiesel production using a solvent engineering method, J. Mol. Catal. B-Enzym., 2008, 55, 118-125. CrossrefGoogle Scholar

  • [32] Voulgaris S., Papadopoulou A.A., Alevizou E., Stamatis H., Voutsas E., Measurement and prediction of solvent effect on enzymatic esterification reactions, Fluid Phase Equilib., 2015, 398, 51-62. Google Scholar

  • [33] Bell G., Halling P.J., Moore B.D., Partridge J., Rees D.G., Biocatalyst behaviour in low-water systems, Trends Biotechnol., 1995, 13, 468-473. CrossrefGoogle Scholar

  • [34] Castillo E., Torres-Gavilán A., Sandoval G., Marty A., Thermodynamical methods for the optimization of lipase-catalyzed reactions, In: Sandoval G. (Ed.), Lipases and Phospholipases, Humana Press, 2012, 383-400. Google Scholar

  • [35] Fermeglia M., Braiuca P., Gardossi L., Pricl S., Halling P.J., In silico prediction of medium effects on esterification equilibrium using the COSMO-RS method, Biotechnol. Prog., 2006, 22, 1146-1152. CrossrefGoogle Scholar

  • [36] Bellot J.C., Choisnard L., Castillo E., Marty A., Combining solvent engineering and thermodynamic modeling to enhance selectivity during monoglyceride synthesis by lipase-catalyzed esterification, Enzyme Microb. Technol., 2001, 28, 362-369. CrossrefGoogle Scholar

  • [37] Castillo E., Pezzotti F., Navarro A., López-Munguía A., Lipasecatalyzed synthesis of xylitol monoesters: Solvent engineering approach, J. Biotechnol., 2003, 102, 251-259. Google Scholar

  • [38] Chen B., Guo Z., Tan T., Xu X., Structures of ionic liquids dictate the conversion and selectivity of enzymatic glycerolysis: Theoretical characterization by COSMO-RS, Biotechnol. Bioeng., 2008, 99, 18-29. Google Scholar

  • [39] Guo Z., Xu X., Lipase-catalyzed glycerolysis of fats and oils in ionic liquids: a further study on the reaction system, Green Chem., 2006, 8, 54-62. CrossrefGoogle Scholar

  • [40] Janssen A.E., Van der Padt A., Riet K.V., Solvent effects on lipase-catalyzed esterification of glycerol and fatty acids, Biotechnol. Bioeng., 1993, 42, 953-962. CrossrefGoogle Scholar

  • [41] Janssen A.E.M., Hadini M., Wessels Boer N., Walinga R., Padt V.D.A., Sonsbeek V.H., Riet V.T.K., The effect of organic solvents on enzymatic esterification of polyols, In: Vermuë M.H., Beeftink H.H., van Stockar U., Tramper J. (Eds.), Biocatalysis in Non-Conventional Media, Elsevier, 1992. Google Scholar

  • [42] Kobayashi T., Adachi S., Reaction equilibrium for lipasecatalyzed condensation in organic solvent systems, Biotechnol. Lett., 2004, 26, 1461-1468. CrossrefGoogle Scholar

  • [43] Tewari Y.B., Thermodynamics of the Lipase-Catalyzed Esterification of 1-Dodecanoic Acid and 1-Dodecanol in Organic Solvents, J. Chem. Eng. Data., 1998, 43, 750-755. Google Scholar

  • [44] Tewari Y.B., Thermodynamics of the lipase-catalyzed transesterification of (-)-menthol and dodecyl dodecanoate in organic solvents, J. Mol. Catal. B-Enzym., 2000, 9, 83-90. CrossrefGoogle Scholar

  • [45] Tewari Y.B., Schantz M.M., Vanderah D.J., Thermodynamics of the Lipase-Catalyzed Esterification of 1-Dodecanoic Acid with (−)-Menthol in Organic Solvents, J. Chem. Eng. Data., 1999, 44, 641-647. Google Scholar

  • [46] Watanabe Y., Miyawaki Y., Adachi S., Nakanishi K., Matsuno R., Equilibrium constant for lipase-catalyzed condensation of mannose and lauric acid in water-miscible organic solvents, Enzyme Microb. Technol., 2001, 29, 494-498. CrossrefGoogle Scholar

  • [47] Klamt A., Eckert F., Arlt W., COSMO-RS: An Alternative to Simulation for Calculating Thermodynamic Properties of Liquid Mixtures, Annu. Rev. Chem. Biomol. Eng., 2010, 1, 101-122. Google Scholar

  • [48] Klibanov A.M., Improving enzymes by using them in organic solvents, Nature, 2001, 409, 241-246. Google Scholar

  • [49] Noritomi H., Solvent Dependence of Enzymatic Enantioselectivity in Ionic Liquids, In: Handy S. (Ed.), Ionic Liquids - Current State of the Art, InTech, 2015, 139-157. Google Scholar

  • [50] Sandoval G.C., Marty A., Condoret J.-S., Thermodynamic activity-based enzyme kinetics: Efficient tool for nonaqueous enzymology, AIChE J., 2001, 47, 718-726. CrossrefGoogle Scholar

  • [51] Carrea G., Ottolina G., Riva S., Role of solvents in the control of enzyme selectivity in organic media, Trends Biotechnol., 1995, 13, 63-70. CrossrefGoogle Scholar

  • [52] Riva S., Exploiting Enzyme Chemoselectivity and Regioselectivity, In: Carrera G., Riva S. (Eds.), Organic Synthesis with Enzymes in Non-Aqueous Media, Wiley-VCH Verlag GmbH & Co. KGaA, 2008, 145-167. Google Scholar

  • [53] Rivera I., Mateos J.C., Marty A., Sandoval G., Duquesne S., Lipase from Carica papaya latex presents high enantioselectivity toward the resolution of prodrug (R,S)-2-bromophenylacetic acid octyl ester, Tetrahedron Lett., 2013, 54, 5523-5526. CrossrefGoogle Scholar

  • [54] Wolff A., Straathof A.J.J., Jongejan J.A., Heijnen J.J., Solvent Induced Change of Enzyme Enantioselectivity: Rule Or Exception?, Biocatal. Biotransform., 1997, 15, 175-184. CrossrefGoogle Scholar

  • [55] Rivera-Ramírez J.D., Escalante J., López-Munguía A., Marty A., Castillo E., Thermodynamically controlled chemoselectivity in lipase-catalyzed aza-Michael additions, J. Mol. Catal. B-Enzym., 2015, 112, 76-82. CrossrefGoogle Scholar

  • [56] Steunenberg P., Sijm M., Zuilhof H., Sanders J.P.M., Scott E.L., Franssen M.C.R., Lipase-catalyzed aza-Michael reaction on acrylate derivatives, J. Org. Chem., 2013, 78, 3802-3813. CrossrefGoogle Scholar

About the article

Received: 2015-08-18

Accepted: 2015-12-11

Published Online: 2016-04-07

Citation Information: Biocatalysis, Volume 1, Issue 1, Pages 178–188, ISSN (Online) 2353-1746, DOI: https://doi.org/10.1515/boca-2015-0013.

Export Citation

© 2016 Castillo E. et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in