Jump to ContentJump to Main Navigation
Show Summary Details
More options …


1 Issue per year

Open Access
See all formats and pricing
More options …

Nanobiocatalysis: Nanostructured materials – a minireview

Magdalena de Jesús Rostro-Alanis
  • Corresponding author
  • School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Col. Tecnológico, 64849, Monterrey, NL, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Elena Ivonne Mancera-Andrade
  • Corresponding author
  • School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Col. Tecnológico, 64849, Monterrey, NL, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mayra Beatriz Gómez Patiño
  • Corresponding author
  • Instituto Politécnico Nacional-CNMN, Calle, Luis Enrique Erro s/n, Unidad Profesional Adolfo López Mateos, Gustavo A, Madero 07738, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Daniel Arrieta-Baez
  • Corresponding author
  • Instituto Politécnico Nacional-CNMN, Calle, Luis Enrique Erro s/n, Unidad Profesional Adolfo López Mateos, Gustavo A, Madero 07738, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Braulio Cardenas
  • Corresponding author
  • School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Col. Tecnológico, 64849, Monterrey, NL, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sergio O. Martinez-Chapa
  • Corresponding author
  • Department of Mechanical and Aerospace Engineering, University of California, Irvine, 92697 CA, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Roberto Parra Saldívar
  • Corresponding author
  • School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Col. Tecnológico, 64849, Monterrey, NL, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-06-03 | DOI: https://doi.org/10.1515/boca-2016-0001


The field of nanobiocatalysis has experienced a rapid growth due to recent advances in nanotechnology. However, biocatalytic processes are often limited by the lack of stability of the enzymes and their short lifetime. Therefore, immobilization is key to the successful implementation of industrial processes based on enzymes. Immobilization of enzymes on functionalized nanostructured materials could give higher stability to nanobiocatalysts while maintaining free enzyme activity and easy recyclability under various conditions. This review will discuss recent developments in nanobiocatalysis to improve the stability of the enzyme using various nanostructured materials such as mesoporous materials, nanofibers, nanoparticles, nanotubes, and individual nanoparticles enzymes. Also, this review summarizes the recent evolution of nanostructured biocatalysts with an emphasis on those formed with polymers. Based on the synthetic procedures used, established methods fall into two important categories: “grafting onto” and “grafting from”. The fundamentals of each method in enhancing enzyme stability and the use of these new nanobiocatalysts as tools for different applications in different areas are discussed.

Keywords: nanobiocatalysis; enzymes; immobilization; nanoparticles; nanotubes; nanofibers


  • [1] Hwang E.T., Gu M.B. , Enzyme stabilization by nano/microsized hybrid materials, Eng. Life Sci., 2013, 13, 49–61. CrossrefGoogle Scholar

  • [2] Min K., Yoo Y.J. , Recent progress in nanobiocatalysis for enzyme immobilization and its application, Biotechnol. Bioprocess Eng., 2014, 19, 553–67, DOI:10.1007/s12257-014- 0173-7. CrossrefGoogle Scholar

  • [3] Ge J., Lu D., Liu Z., Liu Z. , Recent advances in nanostructured biocatalysts, Biochem. Eng. J., 2009, 44, 53–9, DOI:10.1016/j. bej.2009.01.002. CrossrefGoogle Scholar

  • [4] Jia H., Zhu G., Vugrinovich B., Kataphinan W., Reneker D.H., Wang P. , Enzyme-carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts., Biotechnol. Prog., 2002, 18, 1027–32, DOI:10.1021/bp020042m. CrossrefGoogle Scholar

  • [5] Keusgen M., Glodek J., Milka P., Krest I. , Immobilization of enzymes on PTFE surfaces, Biotechnol. Bioeng., 2001, 72, 530–40, DOI:10.1002/1097-0290(20010305)72:5<530::AIDBIT1017> 3.0.CO;2-J. CrossrefGoogle Scholar

  • [6] Moeschel K., Nouaimi M., Steinbrenner C., Bisswanger H. , Immobilization of thermolysin to polyamide nonwoven materials., Biotechnol. Bioeng., 2003, 82, 190–9, DOI:10.1002/ bit.10565. CrossrefGoogle Scholar

  • [7] Ansari S.A., Husain Q. , Potential applications of enzymes immobilized on/in nano materials: A review, Biotechnol. Adv., 2012, 30, 512–23, DOI:10.1016/j.biotechadv.2011.09.005. CrossrefGoogle Scholar

  • [8] Kim J., Grate J.W., Wang P. , Nanobiocatalysis and its potential applications, Trends Biotechnol., 2008, 26, 639–46, DOI:10.1016/j.tibtech.2008.07.009. CrossrefGoogle Scholar

  • [9] Zhu X., Li J., He H., Huang M., Zhang X., Wang S. , Application of nanomaterials in the bioanalytical detection of disease-related genes, Biosens. Bioelectron., 2015, 74, 113–33, DOI:10.1016/j. bios.2015.04.069. CrossrefGoogle Scholar

  • [10] Illanes A., Cauerhff A., Wilson L., Castro G.R. , Recent trends in biocatalysis engineering, Bioresour. Technol., 2012, 115, 48–57, DOI:10.1016/j.biortech.2011.12.050. CrossrefGoogle Scholar

  • [11] Kresge C.T., Leonowicz M.E., Roth W.J., Vartuli J.C., Beck J.S. , Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, 1992, 359, 710–2, DOI:10.1038/359710a0. CrossrefGoogle Scholar

  • [12] Beck J.S., Vartuli J.C., Roth W.J., Leonowicz M.E., Kresge C.T., Schmitt K.D., et al. , A new family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc., 1992, 27, 10834–43, DOI:10.1021/ja00053a020. CrossrefGoogle Scholar

  • [13] Ying J.Y., Mehnert C.P., Wong M.S. , Synthesis and applications of supramolecular-templated mesoporous materials, Angew. Chemie Int. Ed., 1999, 38, 56–77, DOI:10.1002/(SICI)1521- 3773(19990115)38:1/2<56::AID-ANIE56>3.0.CO;2-E. CrossrefGoogle Scholar

  • [14] Wan Y. , On the controllable soft-templating approach to mesoporous silicates, Chem. Rev., 2007, 107, 2821–60, DOI:10.1021/cr068020s. CrossrefGoogle Scholar

  • [15] Han Y., Zhang D. , Ordered mesoporous silica materials with complicated structures, Curr. Opin. Chem. Eng., 2012, 1, 129–37, DOI:10.1016/j.coche.2011.11.001. CrossrefGoogle Scholar

  • [16] Lee C.H., Lin T.S., Mou C.Y. , Mesoporous materials for encapsulating enzymes, Nano Today, 2009, 4, 165–79, DOI:10.1016/j.nantod.2009.02.001. CrossrefGoogle Scholar

  • [17] Orita T., Tomita M., Saito T., Nishida N., Kato K. , Immobilization of cholesterol esterase in mesoporous silica materials and its hydrolytic activity toward diethyl phthalate, Mater. Sci. Eng. C, 2012, 32, 718–24, DOI:10.1016/j.msec.2012.01.014. CrossrefGoogle Scholar

  • [18] Li Y., Zhou G., Qiao W., Wang Y. , Immobilization of Porcine pancreas lipase on fiber-like SBA-15 mesoporous material, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 2009, 162, 120–6, DOI:10.1016/j.mseb.2009.03.016. CrossrefGoogle Scholar

  • [19] Muñoz-Guerrero F.A., Águila S., Vazquez-Duhalt R., Alderete J.B. , Enhancement of operational stability of chloroperoxidase from Caldariomyces fumago by immobilization onto mesoporous supports and the use of co-solvents, J. Mol. Catal. B Enzym., 2015, 116, 1–8, DOI:10.1016/j.molcatb.2015.02.014. CrossrefGoogle Scholar

  • [20] Salcedo K., Torres-Ramírez E., Haces I., Ayala M. , Halogenation of β-estradiol by a rationally designed mesoporous biocatalyst based on chloroperoxidase, Biocatalysis, 2015, 1, 33–43, DOI:10.1515/boca-2015-0001. CrossrefGoogle Scholar

  • [21] Meynen V., Cool P., Vansant E.F. , Verified syntheses of mesoporous materials, Microporous Mesoporous Mater., 2009, 125, 170–223, DOI:10.1016/j.micromeso.2009.03.046. CrossrefGoogle Scholar

  • [22] Sanchez C., Boissière C., Grosso D., Laberty C., Nicole L. , Design, synthesis, and properties of inorganic and hybrid thin films having periodically organized nanoporosity design, synthesis, and properties of inorganic and hybrid thin films having periodically organized nanoporosity, Chem. Mater., 2008, 20, 682–737, DOI:10.1021/cm702100t. CrossrefGoogle Scholar

  • [23] Han Y.J., Watson J.T., Stucky G.D., Butler A. , Catalytic activity of mesoporous silicate-immobilized chloroperoxidase, J. Mol. Catal. - B Enzym., 2002, 17, 1–8, DOI:10.1016/ S1381-1177(01)00072-8. CrossrefGoogle Scholar

  • [24] R. Ahmad M.S. , Enzyme Immobilization: An Overview on Nanoparticles as Immobilization Matrix 2015, 4, 1–11, DOI:10.4172/2161. CrossrefGoogle Scholar

  • [25] Homaei A.A., Sariri R., Vianello F., Stevanato R. , Enzyme immobilization: An update, J. Chem. Biol., 2013, 6, 185–205, DOI:10.1007/s12154-013-0102-9. CrossrefGoogle Scholar

  • [26] He J., Li X., Evans D.G., Duan X., Li C. , A new support for the immobilization of penicillin acylase, J. Mol. Catal. - B Enzym., 2000, 11, 45–53, DOI:10.1016/S1381-1177(00)00218-6. CrossrefGoogle Scholar

  • [27] Shimada H. , Morphology and orientation of MoS2 clusters on Al2O3 and TiO2 supports and their effect on catalytic performance, Catal. Today, 2003, 86, 17–29, DOI:10.1016/ S0920-5861(03)00401-2. CrossrefGoogle Scholar

  • [28] Taguchi A., Schüth F. , Ordered mesoporous materials in catalysis, Microporous Mesoporous Mater., 2005, 77, 1–45, DOI:10.1016/j.micromeso.2004.06.030. CrossrefGoogle Scholar

  • [29] Corma A. , From microporous to mesoporous molecular sieve materials and their se in catalysis, Chem. Rev., 1997, 97, 2373–420. CrossrefGoogle Scholar

  • [30] Zhu Y.T., Ren X.Y., Liu Y.M., Wei Y., Qing L. Sen, Liao X. , Covalent immobilization of porcine pancreatic lipase on carboxyl-activated magnetic nanoparticles: Characterization and application for enzymatic inhibition assays, Mater. Sci. Eng. C, 2014, 38, 278–85, DOI:10.1016/j.msec.2014.02.011. CrossrefGoogle Scholar

  • [31] Curtis A., Wilkinson C. , Nantotechniques and approaches in biotechnology, Trends Biotechnol., 2001, 19, 97–101, DOI:10.1016/S0167-7799(00)01536-5. CrossrefGoogle Scholar

  • [32] Ranjbakhsh E., Bordbar A.K., Abbasi M., Khosropour A.R., Shams E. , Enhancement of stability and catalytic activity of immobilized lipase on silica-coated modified magnetite nanoparticles, Chem. Eng. J., 2012, 179, 272–6, DOI:10.1016/j. cej.2011.10.097. CrossrefGoogle Scholar

  • [33] Yiu H.H.P., Keane M.A. , Enzyme-magnetic nanoparticle hybrids: New effective catalysts for the production of high value chemicals, J. Chem. Technol. Biotechnol., 2012, 87, 583–94, DOI:10.1002/jctb.3735. CrossrefGoogle Scholar

  • [34] Reetz M.T., Zonta A., Vijayakrishnan V., Schimossek K. , Entrapment of lipases in hydrophobic magnetite-containing sol-gel materials: Magnetic separation of heterogeneous biocatalysts, J. Mol. Catal. A Chem., 1998, 134, 251–8, DOI:10.1016/S1381-1169(98)00043-0. CrossrefGoogle Scholar

  • [35] Hong J., Gong P., Xu D., Dong L., Yao S. , Stabilization of α-chymotrypsin by covalent immobilization on amine-functionalized superparamagnetic nanogel, J. Biotechnol., 2007, 128, 597–605, DOI:10.1016/j.jbiotec.2006.11.016. CrossrefGoogle Scholar

  • [36] Namdeo M., Bajpai S.K. , Immobilization of α-amylase onto cellulose-coated magnetite (CCM) nanoparticles and preliminary starch degradation study, J. Mol. Catal. B Enzym., 2009, 59, 134–9, DOI:10.1016/j.molcatb.2009.02.005. CrossrefGoogle Scholar

  • [37] Wu Y., Wang Y., Luo G., Dai Y. , In situ preparation of magnetic Fe3O4-chitosan nanoparticles for lipase immobilization by cross-linking and oxidation in aqueous solution, Bioresour. Technol., 2009, 100, 3459–64, DOI:10.1016/j. biortech.2009.02.018. CrossrefGoogle Scholar

  • [38] Siódmiak T., Ziegler-Borowska M., Marszałł M.P. , Lipaseimmobilized magnetic chitosan nanoparticles for kinetic resolution of (R,S)-ibuprofen, J. Mol. Catal. B Enzym., 2013, 94, 7–14, DOI:10.1016/j.molcatb.2013.04.008. CrossrefGoogle Scholar

  • [39] Yamagata M., Abe M., Handa H., Kawaguchi H. , Magnetite/ polymer composite particles prepared by molecular assembling followed by in-situ magnetite formation, Macromol. Symp., 2006, 245-246, 363–70, DOI:10.1002/masy.200651350. CrossrefGoogle Scholar

  • [40] Li D., Teoh W.Y., Gooding J.J., Selomulya C., Amal R. , Functionalization strategies for protease immobilization on magnetic nanoparticles, Adv. Funct. Mater., 2010, 20, 1767–77, DOI:10.1002/adfm.201000188. CrossrefGoogle Scholar

  • [41] Hu B., Pan J., Yu H.L., Liu J.W., Xu J.H. , Immobilization of Serratia marcescens lipase onto amino-functionalized magnetic nanoparticles for repeated use in enzymatic synthesis of diltiazem intermediate, Process Biochem., 2009, 44, 1019–24, DOI:10.1016/j.procbio.2009.05.001. CrossrefGoogle Scholar

  • [42] Kouassi G.K., Irudayaraj J., McCarty G. , Examination of cholesterol oxidase attachment to magnetic nanoparticles, J. Nanobiotechnology, 2005, 3, 1, DOI:10.1186/1477-3155-3-1. CrossrefGoogle Scholar

  • [43] Ghasemi S., Heidary M., Faramarzi M.A., Habibi Z. , Immobilization of lipase on Fe3O4/ZnO core/shell magnetic nanoparticles and catalysis of Michael-type addition to chalcone derivatives, J. Mol. Catal. B Enzym., 2014, 100, 121–8, DOI:10.1016/j.molcatb.2013.12.006. CrossrefGoogle Scholar

  • [44] Sharma S., Verma A., Teja B.V., Pandey G., Mittapelly N., Trivedi R., et al. , An insight into functionalized calcium based inorganic nanomaterials in biomedicine: Trends and transitions, Colloids Surf B Biointerfaces, 2015, 133, 120–39, DOI:10.1016/j.colsurfb.2015.05.014. CrossrefGoogle Scholar

  • [45] Malmsten M. , Inorganic nanomaterials as delivery systems for proteins, peptides, DNA, and siRNA, Curr. Opin. Colloid Interface Sci., 2013, 18, 468–80, DOI:10.1016/j. cocis.2013.06.002. CrossrefGoogle Scholar

  • [46] Kumar A., Mandal S., Selvakannan P.R., Pasricha R., Mandale a. B., Sastry M. , Investigation into the interaction between surface-bound alkylamines and gold nanoparticles, Langmuir, 2003, 19, 6277–82, DOI:10.1021/la034209c. CrossrefGoogle Scholar

  • [47] Saha K., Agasti S.S., Kim C., Li X., Rotello V.M. , Gold nanoparticles in chemical and biological sensing, Chem. Rev., 2012, 112, 2739–79, DOI:10.1021/cr2001178. CrossrefGoogle Scholar

  • [48] Kim S.Y., Lim T.H., Chang T.S., Shin C.H. , Photocatalysis of methylene blue on titanium dioxide nanoparticles synthesized by modified sol-hydrothermal process of TiCl4, Catal. Letters, 2007, 117, 112–8, DOI:10.1007/s10562-007-9115-8. CrossrefGoogle Scholar

  • [49] Yang M., Yang Y., Liu Y., Shen G., Yu R. , Platinum nanoparticlesdoped sol-gel/carbon nanotubes composite electrochemical sensors and biosensors, Biosens. Bioelectron., 2006, 21, 1125–31, DOI:10.1016/j.bios.2005.04.009. CrossrefGoogle Scholar

  • [50] Homaei A., Etemadipour R. , Improving the activity and stability of actinidin by immobilization on gold nanorods., Int. J. Biol. Macromol., 2015, 72, 1176–81, DOI:10.1016/j. ijbiomac.2014.10.029. CrossrefGoogle Scholar

  • [51] Homaei A., Saberi D. , Immobilization of α-amylase on gold nanorods: An ideal system for starch processing, Process Biochem., 2015, 50, 1394–9, DOI:10.1016/j. procbio.2015.06.002. CrossrefGoogle Scholar

  • [52] Juarez-Moreno K., Díaz de León J.N., Zepeda T.A., Vazquez- Duhalt R., Fuentes S. , Oxidative transformation of dibenzothiophene by chloroperoxidase enzyme immobilized on (1D)-γ-Al2O3 nanorods, J. Mol. Catal. B Enzym., 2015, 115, 90–5, DOI:10.1016/j.molcatb.2015.02.004. CrossrefGoogle Scholar

  • [53] Say R. Photosensitive aminoacid-monomer linkage and bioconjugation applications in life sciences and biotechnology. US20110311505 A1, 2011. Google Scholar

  • [54] Say R., Keçili R., Biçen Ö., Şişiman F.Y., Hür D., Denizli A., et al. , A novel nanoprotein particle synthesis: Nanolipase, Process Biochem., 2011, 46, 1688–92, DOI:10.1016/j. procbio.2011.04.011. CrossrefGoogle Scholar

  • [55] Pumera M., Ambrosi A., Bonanni A., Chng E.L.K., Poh H.L. , Graphene for electrochemical sensing and biosensing, TrAC - Trends Anal. Chem., 2010, 29, 954–65, DOI:10.1016/j. trac.2010.05.011. CrossrefGoogle Scholar

  • [56] Shao Y., Wang J., Wu H., Liu J., Aksay I. a., Lin Y. , Graphene based electrochemical sensors and biosensors: A review, Electroanalysis, 2010, 22, 1027–36, DOI:10.1002/ elan.200900571. CrossrefGoogle Scholar

  • [57] Araque E., Arenas C.B., Gamella M., Reviejo J., Villalonga R., Pingarrón J.M. , Graphene-polyamidoamine dendrimer-Pt nanoparticles hybrid nanomaterial for the preparation of mediatorless enzyme biosensor, J. Electroanal. Chem., 2014, 717-718, 96–102, DOI:10.1016/j.jelechem.2014.01.016. CrossrefGoogle Scholar

  • [58] Ramakrishna S., Fujihara K., Teo W.-E., Lim T.-C., Ma Z. , An introduction to electrospinning and nanofibers, vol. 90, World Scientific, 2005. Google Scholar

  • [59] Cipolatti E.P., Silva M.J.A., Klein M., Feddern V., Feltes M.M.C., Oliveira J.V., et al. , Current status and trends in enzymatic nanoimmobilization, J. Mol. Catal. B Enzym., 2014, 99, 56–67. CrossrefGoogle Scholar

  • [60] Nayak R., Padhye R., Kyratzis I.L., Truong Y., Arnold L. , Recent advances in nanofibre fabrication techniques, Text. Res. J., 2011, 0040517511424524. Google Scholar

  • [61] Greiner A., Wendorff J.H. , Electrospinning: a fascinating method for the preparation of ultrathin fibers, Angew. Chemie Int. Ed., 2007, 46, 5670–703. CrossrefGoogle Scholar

  • [62] Wang Z.-G., Wan L.-S., Liu Z.-M., Huang X.-J., Xu Z.-K. , Enzyme immobilization on electrospun polymer nanofibers: an overview, J. Mol. Catal. B Enzym., 2009, 56, 189–95. CrossrefGoogle Scholar

  • [63] Datta S., Christena L.R., Rajaram Y.R.S. , Enzyme immobilization: an overview on techniques and support materials, 3 Biotech, 2012, 3, 1–9, DOI:10.1007/s13205-012-0071-7. CrossrefGoogle Scholar

  • [64] Wang Z.-G., Wang J.-Q., Xu Z.-K. , Immobilization of lipase from Candida rugosa on electrospun polysulfone nanofibrous membranes by adsorption, J. Mol. Catal. B Enzym., 2006, 42, 45–51. CrossrefGoogle Scholar

  • [65] Huang X.-J., Chen P.-C., Huang F., Ou Y., Chen M.-R., Xu Z.-K. , Immobilization of Candida rugosa lipase on electrospun cellulose nanofiber membrane, J. Mol. Catal. B Enzym., 2011, 70, 95–100. CrossrefGoogle Scholar

  • [66] Liu C.-X., Zhang S.-P., Su Z.-G., Wang P. , Salt induced irreversible protein adsorption with extremely high loadings on electrospun nanofibers, Langmuir, 2010, 27, 760–5. Google Scholar

  • [67] Huang X., Xu Z., Wan L., Innocent C., Seta P. , Electrospun nanofibers modified with phospholipid moieties for enzyme immobilization, Macromol. Rapid Commun., 2006, 27, 1341–5. CrossrefGoogle Scholar

  • [68] Huang X., Xu Z., Wan L., Wang Z., Wang J. , Novel acrylonitrile‐- -based copolymers containing phospholipid moieties: synthesis and characterization, Macromol. Biosci., 2005, 5, 322–30. CrossrefGoogle Scholar

  • [69] Kim B.C., Nair S., Kim J., Kwak J.H., Grate J.W., Kim S.H., et al. , Preparation of biocatalytic nanofibres with high activity and stability via enzyme aggregate coating on polymer nanofibres, Nanotechnology, 2005, 16, S382. Google Scholar

  • [70] Feng W., Ji P. , Enzymes immobilized on carbon nanotubes, Biotechnol. Adv., 2011, 29, 889–95. CrossrefGoogle Scholar

  • [71] Asuri P., Karajanagi S.S., Sellitto E., Kim D., Kane R.S., Dordick J.S. , Water‐soluble carbon nanotube‐enzyme conjugates as functional biocatalytic formulations, Biotechnol. Bioeng., 2006, 95, 804–11. CrossrefGoogle Scholar

  • [72] Sun Y.-P., Fu K., Lin Y., Huang W. , Functionalized carbon nanotubes: properties and applications, Acc. Chem. Res., 2002, 35, 1096–104. CrossrefGoogle Scholar

  • [73] Huang W., Taylor S., Fu K., Lin Y., Zhang D., Hanks T.W., et al. , Attaching proteins to carbon nanotubes via diimide-activated amidation, Nano Lett., 2002, 2, 311–4. CrossrefGoogle Scholar

  • [74] Gao Y., Kyratzis I. , Covalent immobilization of proteins on carbon nanotubes using the cross-linker 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide—a critical assessment, Bioconjug. Chem., 2008, 19, 1945–50. Google Scholar

  • [75] Pavlidis I., Tsoufis T., Enotiadis A., Gournis D., Stamatis H. , Functionalized multi‐Wall carbon nanotubes for lipase immobilization, Adv. Eng. Mater., 2010, 12, B179–83. CrossrefGoogle Scholar

  • [76] Shah S., Solanki K., Gupta M.N. , Enhancement of lipase activity in non-aqueous media upon immobilization on multi-walled carbon nanotubes, Chem Cent J, 2007, 1, 1–6. Google Scholar

  • [77] Kim J., Grate J.W. , Single-enzyme nanoparticles armored by a nanometer-scale organic/inorganic network, Nano Lett., 2003, 3, 1219–22, DOI:10.1021/nl034404b. CrossrefGoogle Scholar

  • [78] Kim J., Jia H., Lee C.W., Chung S.W., Kwak J.H., Shin Y., et al. , Single enzyme nanoparticles in nanoporous silica: A hierarchical approach to enzyme stabilization and immobilization, Enzyme Microb. Technol., 2006, 39, 474–80, DOI:10.1016/j.enzmictec.2005.11.042. CrossrefGoogle Scholar

  • [79] Yan M., Ge J., Liu Z., Ouyang P. , Encapsulation of single enzyme in nanogel with enhanced biocatalytic activity and stability, J. Am. Chem. Soc., 2006, 128, 11008–9, DOI:10.1021/ja064126t. CrossrefGoogle Scholar

  • [80] Hegedus I., Nagy E. , Improvement of chymotrypsin enzyme stability as single enzyme nanoparticles, Chem. Eng. Sci., 2009, 64, 1053–60, DOI:10.1016/j.ces.2008.10.063. CrossrefGoogle Scholar

  • [81] Chen W., Li X., Xue G., Wang Z., Zou W. , Magnetic and conducting particles: Preparation of polypyrrole layer on Fe3O4 nanospheres, Appl. Surf. Sci., 2003, 218, 215–21, DOI:10.1016/ S0169-4332(03)00590-7. CrossrefGoogle Scholar

  • [82] Deng J., He C., Peng Y., Wang J., Long X., Li P., et al. , Magnetic and conductive Fe3O4-polyaniline nanoparticles with core-shell structure, Synth. Met., 2003, 139, 295–301, DOI:10.1016/ S0379-6779(03)00166-8. CrossrefGoogle Scholar

  • [83] Yang Z., Si S., Zhang C. , Magnetic single-enzyme nanoparticles with high activity and stability, Biochem. Biophys. Res. Commun., 2008, 367, 169–75, DOI:10.1016/j.bbrc.2007.12.113. CrossrefGoogle Scholar

  • [84] Al-Adhami A.J.H., Bryjak J., Greb-Markiewicz B., Peczyńska-Czoch W. , Immobilization of wood-rotting fungi laccases on modified cellulose and acrylic carriers, Process Biochem., 2002, 37, 1387–94, DOI:10.1016/ S0032-9592(02)00023-7. CrossrefGoogle Scholar

  • [85] Rosa C.C., Cruz H.J., Vidal M., Oliva A.G. , Optical biosensor based on nitrite reductase immobilised in controlled pore glass, Biosens. Bioelectron., 2002, 17, 45–52, DOI:10.1016/ S0956-5663(01)00263-9. CrossrefGoogle Scholar

  • [86] Cordeiro A.L., Lenk T., Werner C. , Immobilization of Bacillus licheniformis α-amylase onto reactive polymer films, J. Biotechnol., 2011, 154, 216–21, DOI:10.1016/j. jbiotec.2011.04.008. CrossrefGoogle Scholar

  • [87] Mislovicová D., Masárová J., Vikartovská A., Gemeiner P., Michalková E. , Biospecific immobilization of mannanpenicillin G acylase neoglycoenzyme on Concanavalin A-bead cellulose., J. Biotechnol., 2004, 110, 11–9, DOI:10.1016/j. jbiotec.2004.01.006. CrossrefGoogle Scholar

  • [88] Hilal N., Kochkodan V., Nigmatullin R., Goncharuk V., Al-Khatib L. , Lipase-immobilized biocatalytic membranes for enzymatic esterification: Comparison of various approaches to membrane preparation, J. Memb. Sci., 2006, 268, 198–207, DOI:10.1016/j. memsci.2005.06.039. CrossrefGoogle Scholar

  • [89] Tümtürk H., Karaca N., Demirel G., Şahin F. , Preparation and application of poly(N,N-dimethylacrylamide-co-acrylamide) and poly(N-isopropylacrylamide-co-acrylamide)/κ-Carrageenan hydrogels for immobilization of lipase, Int. J. Biol. Macromol., 2007, 40, 281–5, DOI:10.1016/j.ijbiomac.2006.07.004. CrossrefGoogle Scholar

  • [90] Rochefort D., Kouisni L., Gendron K. , Physical immobilization of laccase on an electrode by means of poly(ethyleneimine) microcapsules, J. Electroanal. Chem., 2008, 617, 53–63, DOI:10.1016/j.jelechem.2008.01.027. CrossrefGoogle Scholar

  • [91] Chen G.C., Kuan I.C., Hong J.R., Tsai B.H., Lee S.L., Yu C.Y. , Activity enhancement and stabilization of lipase from Pseudomonas cepacia in polyallylamine-mediated biomimetic silica, Biotechnol. Lett., 2011, 33, 525–9, DOI:10.1007/s10529- 010-0451-1. CrossrefGoogle Scholar

  • [92] Klein M.P., Scheeren C.W., Lorenzoni A.S.G., Dupont J., Frazzon J., Hertz P.F. , Ionic liquid-cellulose film for enzyme immobilization, Process Biochem., 2011, 46, 1375–9, DOI:10.1016/j. procbio.2011.02.021. CrossrefGoogle Scholar

  • [93] Brittain W.J., Minko S. , A structural definition of polymer brushes, J. Polym. Sci. Part A Polym. Chem., 2007, 45, 3505–12, DOI:10.1002/pola.22180. CrossrefGoogle Scholar

  • [94] Russo L., Russo T., Battocchio C., Taraballi F., Gloria A., D’Amora U., et al. , Galactose grafting on poly(ε-caprolactone) substrates for tissue engineering: a preliminary study., Carbohydr. Res., 2015, 405, 39–46, DOI:10.1016/j. carres.2014.07.027. CrossrefGoogle Scholar

  • [95] Feng Q., Hou D., Zhao Y., Xu T., Menkhaus T.J., Fong H. , Electrospun regenerated cellulose nanofibrous membranes surface-grafted with polymer chains/brushes via the atom transfer radical polymerization method for catalase immobilization., ACS Appl. Mater. Interfaces, 2014, 6, 20958–67, DOI:10.1021/am505722g. CrossrefGoogle Scholar

  • [96] Monier M. , Immobilization of β-galactosidase from Escherichia coli onto modified natural silk fibers, J. Appl. Polym. Sci., 2013, 130, 2923–31, DOI:10.1002/app.39475. CrossrefGoogle Scholar

  • [97] Bayramoglu G., Senkal B.F., Arica M.Y. , Preparation of clay–poly(glycidyl methacrylate) composite support for immobilization of cellulase, Appl. Clay Sci., 2013, 85, 88–95, DOI:10.1016/j.clay.2013.09.010. CrossrefGoogle Scholar

  • [98] Kumar V., Misra N., Paul J., Dhanawade B.R., Varshney L. , Uricase-immobilization on radiation grafted polymer support for detection of uric acid using Ag-nanoparticle based optical biosensor, Polymer (Guildf)., 2014, 55, 2652–60, DOI:10.1016/j.polymer.2014.04.012. CrossrefGoogle Scholar

  • [99] Zhang W., Tang Y., Liu J., Ma Y., Jiang L., Huang W., et al. , An electrochemical sensor for detecting triglyceride based on biomimetic polydopamine and gold nanocomposite, J. Mater. Chem. B, 2014, 2, 8490–5, DOI:10.1039/C4TB01439A. CrossrefGoogle Scholar

  • [100] Jahangiri E., Reichelt S., Thomas I., Hausmann K., Schlosser D., Schulze A. , Electron beam-induced immobilization of laccase on porous supports for waste water treatment applications., Molecules, 2014, 19, 11860–82, DOI:10.3390/ molecules190811860. CrossrefGoogle Scholar

  • [101] Rana M., Kumari A., Chauhan G.S., Chauhan K. , Modified chitosan microspheres in non-aggregated amylase immobilization., Int. J. Biol. Macromol., 2014, 66, 46–51, DOI:10.1016/j.ijbiomac.2014.02.022. CrossrefGoogle Scholar

  • [102] Wang C., Li Y., Zhou G., Jiang X., Xu Y., Bu Z. , Improvement of the activation of lipase from Candida rugosa following physical and chemical immobilization on modified mesoporous silica., Mater. Sci. Eng. C. Mater. Biol. Appl., 2014, 45, 261–9, DOI:10.1016/j.msec.2014.09.026. CrossrefGoogle Scholar

  • [103] Zou B., Song C., Xu X., Xia J., Huo S., Cui F. , Enhancing stabilities of lipase by enzyme aggregate coating immobilized onto ionic liquid modified mesoporous materials, Appl. Surf. Sci., 2014, 311, 62–7, DOI:10.1016/j.apsusc.2014.04.210. CrossrefGoogle Scholar

  • [104] Uth C., Zielonka S., Hörner S., Rasche N., Plog A., Orelma H., et al. , A chemoenzymatic approach to protein immobilization onto crystalline cellulose nanoscaffolds., Angew. Chem. Int. Ed. Engl., 2014, 53, 12618–23, DOI:10.1002/anie.201404616. CrossrefGoogle Scholar

  • [105] Zucca P., Sanjust E. , Inorganic materials as supports for covalent enzyme immobilization: methods and mechanisms, Molecules, 2014, 19, 14139–94, DOI:10.3390/ molecules190914139. CrossrefGoogle Scholar

  • [106] Wang P., Sergeeva M. V, Lim L., Dordick J.S. , Biocatalytic plastics as active and stable materials for biotransformations., Nat. Biotechnol., 1997, 15, 789–93, DOI:10.1038/ nbt0897-789. CrossrefGoogle Scholar

  • [107] Yang Z., Mesiano A.J., Venkatasubramanian S., Gross S.H., Harris J.M., Russell A.J. , Activity and stability of enzymes incorporated into acrylic polymers, J. Am. Chem. Soc., 1995, 117, 4843–50, DOI:10.1021/ja00122a014. CrossrefGoogle Scholar

  • [108] Willner I., Katz E., An introduction. In: Willner I, Katz E, editors. Bioelectornics From Theory to Appl. First, Mörlenbach, Wiley-VCH Verlag GmbH & Co. KGaA, 2005, p. 1–475 Google Scholar

  • [109] Kwon K.Y., Yang S.B., Kong B.-S., Kim J., Jung H.-T. , High-performance biosensors based on enzyme precipitate coating in gold nanoparticle-conjugated single-walled carbon nanotube network films, Carbon N Y, 2010, 48, 4504–9. Google Scholar

  • [110] Min K., Yoo Y.J. , Amperometric detection of dopamine based on tyrosinase–SWNTs–Ppy composite electrode, Talanta, 2009, 80, 1007–11. CrossrefGoogle Scholar

  • [111] Yu X., Chattopadhyay D., Galeska I., Papadimitrakopoulos F., Rusling J.F. , Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes, Electrochem. commun., 2003, 5, 408–11. CrossrefGoogle Scholar

  • [112] Wang Z.-G., Wang Y., Xu H., Li G., Xu Z.-K. , Carbon nanotubefilled nanofibrous membranes electrospun from poly (acrylonitrile-co-acrylic acid) for glucose biosensor, J. Phys. Chem. C, 2009, 113, 2955–60. Google Scholar

  • [113] Besteman K., Lee J.-O., Wiertz F.G., Heering H.A., Dekker C. , Enzyme-coated carbon nanotubes as single-molecule biosensors, Nano Lett., 2003, 3, 727–30. CrossrefGoogle Scholar

  • [114] Welch M.E., Doublet T., Bernard C., Malliaras G.G., Ober C.K. , A glucose sensor via stable immobilization of the GOx enzyme on an organic transistor using a polymer brush, J. Polym. Sci. Part A Polym. Chem., 2015, 53, 372–7, DOI:10.1002/ pola.27392. CrossrefGoogle Scholar

  • [115] Osman M.H., Shah a. a., Walsh F.C. , Recent progress and continuing challenges in bio-fuel cells. Part I: Enzymatic cells, Biosens. Bioelectron., 2011, 26, 3087–102, DOI:10.1016/j. bios.2011.01.004. CrossrefGoogle Scholar

  • [116] Leech D., Kavanagh P., Schuhmann W. , Enzymatic fuel cells: Recent progress, Electrochim. Acta, 2012, 84, 223–34, DOI:10.1016/j.electacta.2012.02.087. CrossrefGoogle Scholar

  • [117] Willner I., Katz E. , Bioelectronics: from theory to applications, Wiley-VCH Verlag GmbH & Co. KGaA, 2005. Google Scholar

  • [118] Kim J., Jia H., Wang P. , Challenges in biocatalysis for enzyme-based biofuel cells, Biotechnol. Adv., 2006, 24, 296–308, DOI:10.1016/j.biotechadv.2005.11.006. CrossrefGoogle Scholar

  • [119] Uk Lee H., Young Yoo H., Lkhagvasuren T., Seok Song Y., Park C., Kim J., et al. , Enzymatic fuel cells based on electrodeposited graphite oxide/cobalt hydroxide/chitosan composite-enzyme electrode, Biosens. Bioelectron., 2013, 42, 342–8, DOI:10.1016/j.bios.2012.10.020. CrossrefGoogle Scholar

  • [120] De Poulpiquet a., Ciaccafava a., Gadiou R., Gounel S., Giudici- Orticoni M.T., Mano N., et al. , Design of a H2/O2 biofuel cell based on thermostable enzymes, Electrochem. commun., 2014, 42, 72–4, DOI:10.1016/j.elecom.2014.02.012. CrossrefGoogle Scholar

  • [121] Kim S.H., Shon H.K., Ngo H.H. , Adsorption characteristics of antibiotics trimethoprim on powdered and granular activated carbon, J. Ind. Eng. Chem., 2010, 16, 344–9, DOI:10.1016/j. jiec.2009.09.061. CrossrefGoogle Scholar

  • [122] Fan J., Shui W., Yang P., Wang X., Xu Y., Wang H., et al. , Mesoporous silica nanoreactors for highly efficient proteolysis, Chem. - A Eur. J., 2005, 11, 5391–6, DOI:10.1002/ chem.200500060. CrossrefGoogle Scholar

  • [123] Shui W., Fan J., Yang P., Liu C., Zhai J., Lei J., et al. , Nanoporebased proteolytic reactor for sensitive and comprehensive proteomic analyses, Anal. Chem., 2006, 78, 4811–9, DOI:10.1021/ac060116z. CrossrefGoogle Scholar

  • [124] Qiao L., Liu Y., Hudson S.P., Yang P., Magner E., Liu B. , A nanoporous reactor for efficient proteolysis, Chem. - A Eur. J., 2008, 14, 151–7, DOI:10.1002/chem.200701102. CrossrefGoogle Scholar

  • [125] Ying S., Wei G., Li Q., Juan Q., Fuyi W., Lanqun M. , Immobilization of trypsin via reactive polymer grafting from magnetic nanoparticles for microwave-assisted digestion, J. Mater. Chem. B, 2013, 1, 2260–7, DOI:10.1039/C3TB20116C. CrossrefGoogle Scholar

  • [126] Sun J., Hu K., Liu Y., Pan Y., Yang Y. , Novel superparamagnetic sanoparticles for trypsin immobilization and the application for efficient proteolysis, J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 2013, 942-943, 9–14, DOI:10.1016/j. jchromb.2013.10.015. CrossrefGoogle Scholar

  • [127] Van Dyk J.S., Pletschke B.I. , A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-Factors affecting enzymes, conversion and synergy, Biotechnol. Adv., 2012, 30, 1458–80, DOI:10.1016/j.biotechadv.2012.03.002. CrossrefGoogle Scholar

  • [128] Ge J., Lu D., Wang J., Liu Z. , Lipase nanogel catalyzed transesterification in anhydrous dimethyl sulfoxide, Biomacromolecules, 2009, 10, 1612–8, DOI:10.1021/bm900205r. CrossrefGoogle Scholar

  • [129] Kumar V., Jahan F., Raghuwanshi S., Mahajan R. V., Saxena R.K. , Immobilization of Rhizopus oryzae lipase on magnetic Fe3O 4-chitosan beads and its potential in phenolic acids ester synthesis, Biotechnol. Bioprocess Eng., 2013, 18, 787–95, DOI:10.1007/s12257-012-0793-8. CrossrefGoogle Scholar

  • [130] Thao P. N. N., Wei Z., Wen W., Li Z. , Reversible clustering of magnetic nanobiocatalysts for high-performance biocatalysis and easy catalyst recycling, Chem. Commun., 2012, 38, 4585–7, DOI:10.1039/C2CC30953J. CrossrefGoogle Scholar

  • [131] Bosio V.E., Islan G. a., Martínez Y.N., Durán N., Castro G.R. , Nanodevices for the immobilization of therapeutic enzymes, Crit. Rev. Biotechnol., 2015, 1–18, DOI:10.3109/07388551.201 4.990414. CrossrefGoogle Scholar

  • [132] Rai M., Gade A., Gaikwad S., Marcato P.D., Duann N. , Biomedical applications of nanobiosensors: The state-ofthe- art, J. Braz. Chem. Soc., 2012, 23, 14–24, DOI:10.1590/ S0103-50532012000100004. CrossrefGoogle Scholar

  • [133] Duran N., Martinez D.S.T., Silveira C.P., Duran M., de Moraes A.C.M., Simoes M.B., et al. , Graphene Oxide: A Carrier for Pharmaceuticals and a Scaffold for Cell Interactions, Curr. Top. Med. Chem., 2015, 15, 309–27, DOI:10.2174/15680266156661 50108144217. CrossrefGoogle Scholar

  • [134] Mohajershojaei K., Mahmoodi N.M., Khosravi A. , Immobilization of laccase enzyme onto titania nanoparticle and decolorization of dyes from single and binary systems, Biotechnol. Bioprocess Eng., 2015, 20, 109–16, DOI:10.1007/ s12257-014-0196-0. CrossrefGoogle Scholar

  • [135] Du K., Sun J., Zhou X., Feng W. , A Two-Enzyme Immobilization Approach Using Carbon Nanotubes / Silica as Support 2014, 1–6, DOI:10.1002/btpr.2010. CrossrefGoogle Scholar

  • [136] Huang J., Wang H., Li D., Zhao W., Ding L., Han Y. , A new immobilized glucose oxidase using SiO2 nanoparticles as carrier, Mater. Sci. Eng. C, 2011, 31, 1374–8, DOI:10.1016/j. msec.2011.05.003. CrossrefGoogle Scholar

  • [137] Husain Q., Ansari S.A., Alam F., Azam A. , Immobilization of Aspergillus oryzae ?? galactosidase on zinc oxide nanoparticles via simple adsorption mechanism, Int. J. Biol. Macromol., 2011, 49, 37–43, DOI:10.1016/j. ijbiomac.2011.03.011. CrossrefGoogle Scholar

  • [138] Jang E., Park S., Park S., Lee Y., Kim D.N., Kim B., et al. , Fabrication of poly(ethylene glycol)-based hydrogels entrapping enzyme-immobilized silica nanoparticles, Polym. Adv. Technol., 2010, 21, 476–82, DOI:10.1002/pat.1455. CrossrefGoogle Scholar

  • [139] Lei C., Shin Y., Liu J., Ackerman E.J. , Synergetic effects of nanoporous support and urea on enzyme activity, Nano Lett., 2007, 7, 1050–3, DOI:10.1021/nl070255b. CrossrefGoogle Scholar

  • [140] Gascón V., Díaz I., Márquez-Álvarez C., Blanco R.M. , Mesoporous silicas with tunable morphology for the immobilization of laccase., Molecules, 2014, 19, 7057–71, DOI:10.3390/molecules19067057. CrossrefGoogle Scholar

  • [141] Vinoba M., Bhagiyalakshmi M., Jeong S.K., Yoon Y.I., Nam S.C. , Immobilization of carbonic anhydrase on spherical SBA-15 for hydration and sequestration of CO2., Colloids Surf. B. Biointerfaces, 2012, 90, 91–6, DOI:10.1016/j. colsurfb.2011.10.001. CrossrefGoogle Scholar

  • [142] Xu Y., Zhou G., Wu C., Li T., Song H. , Improving adsorption and activation of the lipase immobilized in amino-functionalized ordered mesoporous SBA-15, Solid State Sci., 2011, 13, 867–74, DOI:10.1016/j.solidstatesciences.2011.03.003. CrossrefGoogle Scholar

  • [143] Manyar H.G., Gianotti E., Sakamoto Y., Terasaki O., Coluccia S., Tumbiolo S. , Active Biocatalysts Based on Pepsin Immobilized in Mesoporous SBA-15, J. Phys. Chem. C, 2008, 112, 18110–6, DOI:10.1021/jp802420t. CrossrefGoogle Scholar

  • [144] He J., Xu Y., Ma H., Zhang Q., Evans D.G., Duan X. , Effect of surface hydrophobicity/hydrophilicity of mesoporous supports on the activity of immobilized lipase., J. Colloid Interface Sci., 2006, 298, 780–6, DOI:10.1016/j. jcis.2005.12.063. CrossrefGoogle Scholar

  • [145] Monteil C., Bar N., Retoux R., Henry J., Bernay B., Villemin D. , Partially phosphonated polyethylenimine-coated nanoparticles as convenient support for enzyme immobilization in bioprocessing, Sensors Actuators, B Chem., 2014, 192, 269–74, DOI:10.1016/j.snb.2013.09.096. CrossrefGoogle Scholar

  • [146] Vahidi A.K., Yang Y., Ngo T.P.N., Li Z. , Simple and efficient immobilization of extracellular his-tagged enzyme directly from cell culture supernatant as active and recyclable nanobiocatalyst: High-performance production of biodiesel from waste grease, ACS Catal., 2015, 5, 3157–61, DOI:10.1021/ acscatal.5b00550. CrossrefGoogle Scholar

  • [147] Jin L., Li Y., Ren X.-H., Lee J.-H. , Immobilization of lactase onto various polymer nanofibers for enzyme stabilization and recycling, J. Microbiol. Biotechnol., 2015, 25, 1291–8. CrossrefGoogle Scholar

  • [148] Seenuvasan M., Malar C.G., Preethi S., Balaji N., Iyyappan J., Kumar M.A., et al. , Fabrication, characterization and application of pectin degrading Fe3O4-SiO2 nanobiocatalyst., Mater. Sci. Eng. C. Mater. Biol. Appl., 2013, 33, 2273–9, DOI:10.1016/j.msec.2013.01.050. CrossrefGoogle Scholar

  • [149] Ansari S.A., Husain Q., Qayyum S., Azam A. , Designing and surface modification of zinc oxide nanoparticles for biomedical applications, Food Chem. Toxicol., 2011, 49, 2107–15, DOI:10.1016/j.fct.2011.05.025. CrossrefGoogle Scholar

  • [150] Cui Y., Li Y., Yang Y., Liu X., Lei L., Zhou L., et al. , Facile synthesis of amino-silane modified superparamagnetic Fe3O4 nanoparticles and application for lipase immobilization, J. Biotechnol., 2010, 150, 171–4, DOI:10.1016/j. jbiotec.2010.07.013. CrossrefGoogle Scholar

  • [151] Huang J., Zhao R., Wang H., Zhao W., Ding L. , Immobilization of glucose oxidase on Fe3O4/SiO2 magnetic nanoparticles, Biotechnol. Lett., 2010, 32, 817–21, DOI:10.1007/s10529-010- 0217-9. CrossrefGoogle Scholar

  • [152] Hsieh H.C., Kuan I.C., Lee S.L., Tien G.Y., Wang Y.J., Yu C.Y. , Stabilization of d-amino acid oxidase from Rhodosporidium toruloides by immobilization onto magnetic nanoparticles, Biotechnol. Lett., 2009, 31, 557–63, DOI:10.1007/s10529- 008-9894-z. CrossrefGoogle Scholar

  • [153] Konwarh R., Karak N., Rai S.K., Mukherjee A.K. , Polymerassisted iron oxide magnetic nanoparticle immobilized keratinase., Nanotechnology, 2009, 20, 225107, DOI:10.1088/0957-4484/20/22/225107. CrossrefGoogle Scholar

  • [154] Pan C., Hu B., Li W., Sun Y., Ye H., Zeng X. , Novel and efficient method for immobilization and stabilization of β-d-galactosidase by covalent attachment onto magnetic Fe3O4-chitosan nanoparticles, J. Mol. Catal. B Enzym., 2009, 61, 208–15, DOI:10.1016/j.molcatb.2009.07.003. CrossrefGoogle Scholar

  • [155] Shaw S.-Y., Chen Y.-J., Ou J.-J., Ho L. , Preparation and characterization of Pseudomonas putida esterase immobilized on magnetic nanoparticles, Enzyme Microb. Technol., 2006, 39, 1089–95, DOI:10.1016/j.enzmictec.2006.02.025. CrossrefGoogle Scholar

  • [156] Pereira de Sousa I., Cattoz B., Wilcox M.D., Griffiths P.C., Dalgliesh R., Rogers S., et al. , Nanoparticles decorated with proteolytic enzymes, a promising strategy to overcome the mucus barrier, Eur. J. Pharm. Biopharm., 2015, DOI:10.1016/j. ejpb.2015.01.008. CrossrefGoogle Scholar

  • [157] Mukhopadhyay A., Bhattacharyya T., Dasgupta A.K., Chakrabarti K. , Nanotechnology based activation-immobilization of psychrophilic pectate lyase: A novel approach towards enzyme stabilization and enhanced activity, J. Mol. Catal. B Enzym., 2015, 119, 54–63, DOI:10.1016/j. molcatb.2015.05.017. CrossrefGoogle Scholar

  • [158] Gao X., Ni K., Zhao C., Ren Y., Wei D. , Enhancement of the activity of enzyme immobilized on polydopaminecoated iron oxide nanoparticles by rational orientation of formate dehydrogenase, J. Biotechnol., 2014, 188, 36–41, DOI:10.1016/j.jbiotec.2014.07.443. CrossrefGoogle Scholar

  • [159] Viswanathan K., Vadivoo V.S., Dhinakar Raj G. , Rapid determination of hydrogen peroxide produced by Lactobacillus using enzyme coupled rhodamine isocyanide/ calcium phosphate nanoparticles, Biosens. Bioelectron., 2014, 61, 200–8, DOI:10.1016/j.bios.2014.04.015. CrossrefGoogle Scholar

  • [160] Seino S., Watanabe K., Shikakura T., Abe M., Nakagawa T., Koga Y., et al. , Enzyme immobilization on gold/Fe-oxide composite nanoparticles using a methionine tag, Colloids Surfaces A Physicochem. Eng. Asp., 2014, 459, 298–301, DOI:10.1016/j.colsurfa.2014.06.049. CrossrefGoogle Scholar

  • [161] Say R., Şenay R.H., Biçen Ö., Ersöz A., Şişman Yilmaz F., Akgöl S., et al. , Polymeric amylase nanoparticles as a new semi-synthetic enzyme system for hydrolysis of starch, Mater. Sci. Eng. C, 2013, 33, 1900–6, DOI:10.1016/j. msec.2012.12.053. CrossrefGoogle Scholar

  • [162] Crespilho F.N., Iost R.M., Travain S. a., Oliveira O.N., Zucolotto V. , Enzyme immobilization on Ag nanoparticles/polyaniline nanocomposites, Biosens. Bioelectron., 2009, 24, 3073–7, DOI:10.1016/j.bios.2009.03.026. CrossrefGoogle Scholar

  • [163] Zhao K., Zhuang S., Chang Z., Songm H., Dai L., He P., et al. , Amperometric glucose biosensor based on platinum nanoparticles combined aligned carbon nanotubes electrode, Electroanalysis, 2007, 19, 1069–74, DOI:10.1002/ elan.200603823. CrossrefGoogle Scholar

  • [164] Crespilho F.N., Emilia Ghica M., Florescu M., Nart F.C., Oliveira O.N., Brett C.M. a. , A strategy for enzyme immobilization on layer-by-layer dendrimer-gold nanoparticle electrocatalytic membrane incorporating redox mediator, Electrochem. commun., 2006, 8, 1665–70, DOI:10.1016/j. elecom.2006.07.032. CrossrefGoogle Scholar

  • [165] Yadav R., Labhsetwar N., Kotwal S., Rayalu S. , Single enzyme nanoparticle for biomimetic CO2 sequestration, J. Nanoparticle Res., 2011, 13, 263–71, DOI:10.1007/s11051-010-0026-z. CrossrefGoogle Scholar

  • [166] Yan M., Liu Z., Lu D., Liu Z. , Fabrication of single carbonic anhydrase nanogel against denaturation and aggregation at high temperature, Biomacromolecules, 2007, 8, 560–5, DOI:10.1021/bm060746a. CrossrefGoogle Scholar

  • [167] Li N., Zheng W., Shen Y., Qi L., Li Y., Qiao J., et al. , Preparation of a novel polymer monolith with functional polymer brushes by two-step atom-transfer radical polymerization for trypsin immobilization., J. Sep. Sci., 2014, 37, 3411–7, DOI:10.1002/ jssc.201400794. CrossrefGoogle Scholar

  • [168] Müller V., Rathousky J., Fattakhova-Rohlfing D. , Covalent immobilization of redox protein within the mesopores of transparent conducting electrodes, Electrochim. Acta, 2014, 116, 1–8, DOI:10.1016/j.electacta.2013.10.136. CrossrefGoogle Scholar

  • [169] Uzun K., Çevik E., Şenel M., Baykal A. , Reversible immobilization of invertase on Cu-chelated polyvinylimidazole- grafted iron oxide nanoparticles., Bioprocess Biosyst. Eng., 2013, 36, 1807–16, DOI:10.1007/s00449- 013-0955-x. CrossrefGoogle Scholar

  • [170] Du K., Sun J., Zhou X., Feng W., Jiang X., Ji P. , A two-enzyme immobilization approach using carbon nanotubes/silica as support, Biotechnol. Prog., 2015, 31, 42–7, DOI:10.1002/ btpr.2010. CrossrefGoogle Scholar

  • [171] Heredia K.L., Bontempo D., Ly T., Byers J.T., Halstenberg S., Maynard H.D. , In situ preparation of protein-“smart” polymer conjugates with retention of bioactivity., J. Am. Chem. Soc., 2005, 127, 16955–60, DOI:10.1021/ja054482w. CrossrefGoogle Scholar

  • [172] Lele B.S., Murata H., Matyjaszewski K., Russell A.J. , Synthesis of uniform protein-polymer conjugates., Biomacromolecules, 6, 3380–7, DOI:10.1021/bm050428w. CrossrefGoogle Scholar

  • [173] Nicolas J., San Miguel V., Mantovani G., Haddleton D.M. , Fluorescently tagged polymer bioconjugates from protein derived macroinitiators., Chem. Commun. (Camb)., 2006, 4697–9, DOI:10.1039/b609935a. CrossrefGoogle Scholar

  • [174] Boyer C., Bulmus V., Liu J., Davis T.P., Stenzel M.H., Barner- Kowollik C. , Well-defined protein-polymer conjugates via in situ RAFT polymerization., J. Am. Chem. Soc., 2007, 129, 7145–54, DOI:10.1021/ja070956a. CrossrefGoogle Scholar

  • [175] Liu J., Bulmus V., Herlambang D.L., Barner-Kowollik C., Stenzel M.H., Davis T.P. , In situ formation of protein-polymer conjugates through reversible addition fragmentation chain transfer polymerization., Angew. Chem. Int. Ed. Engl., 2007, 46, 3099–103, DOI:10.1002/anie.200604922. CrossrefGoogle Scholar

  • [176] Zhu B., Lu D., Ge J., Liu Z. , Uniform polymer-protein conjugate by aqueous AGET ATRP using protein as a macroinitiator., Acta Biomater., 2011, 7, 2131–8, DOI:10.1016/j.actbio.2011.01.033. CrossrefGoogle Scholar

  • [177] Cummings C., Murata H., Koepsel R., Russell A.J. , Tailoring enzyme activity and stability using polymer-based protein engineering., Biomaterials, 2013, 34, 7437–43, DOI:10.1016/j. biomaterials.2013.06.027. CrossrefGoogle Scholar

About the article

Received: 2015-08-18

Accepted: 2016-04-04

Published Online: 2016-06-03

Citation Information: Biocatalysis, Volume 2, Issue 1, Pages 1–24, ISSN (Online) 2353-1746, DOI: https://doi.org/10.1515/boca-2016-0001.

Export Citation

© 2016 Magdalena de Jesús Rostro-Alanis et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Bharat P. Dwivedee, Surbhi Soni, Joydev K. Laha, and Uttam C. Banerjee
International Journal of Biological Macromolecules, 2018, Volume 119, Page 8
Diego Cazaban, Andrés Illanes, Lorena Wilson, and Lorena Betancor
Process Biochemistry, 2018
Rina D. Koyani, Mariana Andrade, Katrin Quester, Paul Gaytán, Alejandro Huerta-Saquero, and Rafael Vazquez-Duhalt
Applied Nanoscience, 2018
Karla Alejo-González, Erik Hanson-Viana, and Rafael Vazquez-Duhalt
Journal of Pesticide Science, 2018, Volume 43, Number 1, Page 1
Mozhgan Razzaghi, Ahmad Homaei, and Elaheh Mosaddegh
International Journal of Biological Macromolecules, 2018
Carlos Barrios-Estrada, Magdalena de Jesús Rostro-Alanis, Ana Luisa Parra, Marie-Pierre Belleville, Jose Sanchez-Marcano, Hafiz M.N. Iqbal, and Roberto Parra-Saldívar
International Journal of Biological Macromolecules, 2017
Rina Koyani, Javier Pérez-Robles, Ruben D. Cadena-Nava, and Rafael Vazquez-Duhalt
Nanotechnology Reviews, 2017, Volume 6, Number 5
Carlos Barrios-Estrada, Magdalena de Jesús Rostro-Alanis, Blanca Delia Muñoz-Gutiérrez, Hafiz M.N. Iqbal, Soundarapandian Kannan, and Roberto Parra-Saldívar
Science of The Total Environment, 2018, Volume 612, Page 1516
Alejandro Tapia-Moreno, Karla Juarez-Moreno, Oscar Gonzalez-Davis, Ruben D. Cadena-Nava, and Rafael Vazquez-Duhalt
Biotechnology Journal, 2017, Volume 12, Number 6, Page 1600706

Comments (0)

Please log in or register to comment.
Log in