Jump to ContentJump to Main Navigation
Show Summary Details
More options …


1 Issue per year

Open Access
See all formats and pricing
More options …

Nanomaterials as novel supports for the immobilization of amylolytic enzymes and their applications: A review

Qayyum Husain
Published Online: 2017-03-30 | DOI: https://doi.org/10.1515/boca-2017-0004


Numerous types of nanoparticles and nanocomposites have successfully been employed for the immobilization and stabilization of amylolytic enzymes; α-amylases, β-amylases, glucoamylases and pullulanases. Nano-support immobilized amylolytic enzymes retained very high activity and yield of immobilization. The immobilization of these enzymes, particularly α-amylases and pullulanases, to the nanosupports is helpful in minimizing the problem of steric hindrances during binding of substrate to the active site of the enzyme. The majority of nano-support immobilized amylolytic enzymes exhibited very high resistance to inactivation induced by different kinds of physical and chemical denaturants and these immobilized enzyme preparations maintained very high activity on their repeated and continuous uses. Amylolytic enzymes immobilized on nano-supports have successfully been applied in food, fuel, textile, paper and pulp, detergent, environmental, medical, and analytical fields.

Keywords: α-amylase; glucoamylase; magnetic nanoparticles; nanomaterial; pullulanase; immobilization; stabilization; reusability


  • [1] Gangadharan D., Sivaramakrishnan S., Amylolytic enzymes. in “Biotechnol Ag-Ind Res Util.” eds. Nigam PS, Pandey A.” Springer Netherlands, 2009, 359-369.Google Scholar

  • [2] Hii S.L., Tan J.S., Ling T.C., Ariff A.B., Pullulanase: Role in starch hydrolysis and potential industrial applications, Enzyme Res., 2012, 2012,921362.Google Scholar

  • [3] Tester R.F., Karkalas J., Qi X., Starch- composition, fine structure and architecture, J. Cerl. Sci., 2004, 39(2),151-165.Google Scholar

  • [4] Perez S., Bertoft E., The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. Starch-Starke, 2010,62(8), 389-420.Google Scholar

  • [5] Van Der Maarel M.J.E.C.., Van Der Veen B., Uitdehaag J.C.M., Leemhuis H., Dijkhuizen L., Properties and applications of starch-converting enzymes of the α-amylase family, J. Biotechnol., 2002,94(2), 137-155.Google Scholar

  • [6] Sundarram A., Krishna Murthy T.P., α-Amylase production and applications: A review, J. Appl. Environ. Microbiol., 2014, 2(4), 166-175.Google Scholar

  • [7] Monteiro de Souza P., de Oliveira Magalhaes P., Application of microbial α-amylase in industry-A review, Braz. J. Microbiol., 2010, 41(4),850-861.Google Scholar

  • [8] Mobini-Dehkordi M., Javan F.A., Application of alpha-amylase in biotechnology. J. Biol. Today World, 2012, 1(1), 39-50.Google Scholar

  • [9] Mojarad F., Fazlollahifar S., Poorolajal J., Hajilooi M., Effect of alpha amylase on early childhood caries: A matched case-control study, Braz. Dent. Sci., 2013, 16(1),41-45.Google Scholar

  • [10] Saranraj P., Stella D., Fungal amylase-A review, Int. J. Microbiol. Res., 2013, 4(2), 203-211.Google Scholar

  • [11] Vengadaramana A., Industrial important microbial alphaamylase on starch-converting process, Sch. Acad. J. Pharm., 2013, 2(3), 209-221.Google Scholar

  • [12] Bertoldo C., Antranikian G., Starch-hydrolyzing enzymes from Thermophilic archaea and bacteria, Curr. Opi. Chem. Biol., 2002, 6(2), 151-160.CrossrefGoogle Scholar

  • [13] Haki H.D., Rakshit S.K., Developments in industrially important thermostable enzymes: A review, Biores. Technol., 2003, 89(1), 17-34.CrossrefGoogle Scholar

  • [14] Husain, Q., Peroxidase mediated decolorization and remediation of wastewater containing industrial dyes: A review, Rev. Environ. Sci. Bio./Technol., 2010, 9(2),117-140.CrossrefGoogle Scholar

  • [15] Husain Q., β Galactosidases and their potential applications: A review, Crit. Rev. Biotechnol., 2010, 30(1),41-62.CrossrefGoogle Scholar

  • [16] Husain Q., Ulber R., Immobilized peroxidase as a valuable tool in the remediation of aromatic pollutants and xenobiotic compounds: A review, Crit. Rev. Environ. Sci .Technol., 2011,41(8),770-804.CrossrefGoogle Scholar

  • [17] DiCosimo R., McAuliffe J., Poulose A.J., Bohlmann G., Industrial use of immobilized enzymes.,Chem. Soc. Rev., 2013, 42(15), 6437-74.CrossrefGoogle Scholar

  • [18] Fernandes P., Enzymes in food processing: A condensed overview on strategies for better biocatalysts, Enzyme Res., 2010,2010, 862537.Google Scholar

  • [19] Brena B.M., Batista-Viera F., Immobilization of enzymes: A literature survey, in “Methods in Biotechnology: Immobilization of Enzymes and Cells, Second Edition” Ed. J. M. Guisan, Humana Press Inc., Totowa, NJ, 2006, p 15-30.Google Scholar

  • [20] Varalakshmi V., Prasad D.S.R.. Enzyme immobilization: The fascinating challenge in biotechnology, J. Environ. Sci. Comp Sci Eng Technol. 2(3): 840-853: 2013.Google Scholar

  • [21] Kahar UM, Sani MH, Chan K-G, Kian Mau Goh KM. Immobilization of α-amylase from Anoxybacillus sp. SK3-4 on ReliZyme and Immobead supports. Molecules 21(9):1196; 2016.CrossrefGoogle Scholar

  • [22] Ahmad R., Sardar M., Enzyme Immobilization: An Overview on Nanoparticles as Immobilization Matrix. Biochem. Anal. Biochem., 2015,4,178.Google Scholar

  • [23] Bosio V.E., Islan G.A., Martinez Y.N., Duran N., Castro G.R., Nanodevices for the immobilization of therapeutic enzymes, Crit. Rev. Biotechnol., 2016,36(3),447-64.Google Scholar

  • [24] Rostro-Alanis M.d.J., Mancera-Andrade E.I., Patino M.B.G., Arrieta-Baez D., Cardenas B., Martinez-Chapa S.O., Saldivar R.P., Nanobiocatalysis: Nanostructured materials -a mini-review, Biocatalysis, 2016, 2, 1-24.Google Scholar

  • [25] Ansari SA , Husain Q, Qayyum S, Azam A. Designing and surface modification of zinc oxide nanoparticles for biomedical applications. Food Chem Toxicol. 49(9):2107-15; 2011.CrossrefGoogle Scholar

  • [26] Ansari SA, Husain Q. Immobilization of Kluyveromyces lactis β galactosidase on concanavalin A layered aluminium oxide nanoparticles: Its future aspects in biosensor applications. J Mol Catal B: Enzym. 70(3-4):119-126; 2011.CrossrefGoogle Scholar

  • [27] Husain Q, Ansari SA, Alam F, Azam A. Immobilization of Aspergillus oryzae β-galactosidase on zinc oxide nanoparticles via simple adsorption mechanism. Int J Biol Macromol. 49:37-43; 2011.CrossrefGoogle Scholar

  • [28] Ansari SA, Husain Q. Potential applications of enzymes immobilized on/in nano materials: A review. Biotechnol Adv. 30(3):512-523; 2012.CrossrefGoogle Scholar

  • [29] Govan J, Gun’ko YK. Recent advances in the application of magnetic nanoparticles as a support for homogeneous catalysts. Nanomaterials 4:222-241; 2014.CrossrefGoogle Scholar

  • [30] Khan M, Husain Q, Naqvi AH. Graphene based magnetic nanocomposites as versatile carriers for high yield immobilization and stabilization of β-galactosidase. RSC Adv. 6:53493-53503; 2016.CrossrefGoogle Scholar

  • [31] Husain Q. Magnetic nanoparticles as a tool for the immobilization/ stabilization of hydrolases and their application: An overview. Biointerface Res Appl Chem. 6(6); 1585-1606; 2016.Google Scholar

  • [32] Prakasham RS, Devi GS, Laxmi KR, Rao CS. Novel synthesis of ferric impregnated silica nanoparticles and their evaluation as a matrix for enzyme immobilization. J Phys Chem C 111:3842-3847; 2007.Google Scholar

  • [33] Namdeo M, Bajpai SK. Immobilization of α-amylase onto cellulose-coated magnetite (CCM) nanoparticles and preliminary starch degradation study. J Mol Catal B: Enzym. 59(1-3):134-139; 2009.CrossrefGoogle Scholar

  • [34] Mukherjee AK, Kumar TS, Rai SK, Roy JK. Statistical optimization of Bacillus alcalophilus α-amylase immobilization on iron-oxide magnetic nanoparticles. Biotechnol Biopr Eng. 15:984-992; 2010.CrossrefGoogle Scholar

  • [35] Khan JA, Qayyum S, Alam F, Husain Q. Effect of tin oxide nanoparticle binding on the structure and activity of α-amylase from Bacillus amyloliquefaciens. Nanotechnology 22(45):455708; 2011.CrossrefGoogle Scholar

  • [36] Khan MJ, Husain Q. Influence of pH and temperature on the activity of SnO2-bound α-amylase: A genotoxicity assessment of SnO2 nanoparticles. Prep Biochem Biotechnol. 44(6):558-71; 2014.CrossrefGoogle Scholar

  • [37] Soleimani M, Khani A, Najafzadeh K. α-Amylase immobilization on the silica nanoparticles for cleaning performance towards starch soils in laundry detergents. J Mol Catal B: Enzym. 74(1-2):1-5; 2012.CrossrefGoogle Scholar

  • [38] Demir S, Gok SB, Kahraman MV. α-Amylase immobilization on functionalized nano CaCO3 by covalent attachment. Starch 64(1):3-9; 2012.CrossrefGoogle Scholar

  • [39] Khan MJ, Husain Q, Azam A. Immobilization of porcine pancreatic α-amylase on magnetic Fe2O3 nanoparticles: Applications to the hydrolysis of starch. Biotechnol Bioproc Eng. 17(2):377-384; 2012.CrossrefGoogle Scholar

  • [40] Jalal A, Milani ZM, Goharshadi EK. Immobilization of α-amylase onto magnetic nanoparticles by shaking method. Ist National Iran New Chem Cong, Shiraz Iran 5-6th May, 2013.Google Scholar

  • [41] Kim H, Lee JH. Development of (α-amylase coated magnetic nanofiber for the hydrolysis of starch. J Life Sci. 17(9):1260-1265; 2007.CrossrefGoogle Scholar

  • [42] Uygun DA, Ozturk N, Akgol S, Denizli A. Novel magnetic nanoparticles for the hydrolysis of starch with Bacillus licheniformis α-amylase. J Appl Polym Sci. 123(5):2574-2581; 2012.CrossrefGoogle Scholar

  • [43] Chen YH, Chi MC, Wang TF, Chen JC, Lin LL. Preparation of magnetic nanoparticles and their use for immobilization of C-terminally lysine-tagged Bacillus sp. TS-23 α-amylase. Appl Biochem Biotechnol. 166(7):1711-22; 2012.CrossrefGoogle Scholar

  • [44] Mishra A, Ahmad R, Singh V, Gupta MN, Sardar M. Preparation, characterization and biocatalytic activity of a nanoconjugate of alpha-amylase and silver nanoparticles. J Nanosci Nanotechnol. 13:5028-5033;2013.CrossrefGoogle Scholar

  • [45] Lee MH, Thomas JL, Chen YC, Wang HY, Lin HY. Hydrolysis of magnetic amylase-imprinted poly(ethylene-co-vinyl alcohol) composite nanoparticles. ACS Appl Mater Interf. 4(2):916-21; 2012.CrossrefGoogle Scholar

  • [46] Zhang Q, Han X, Tang B. Preparation of a magnetically recoverable biocatalyst support on monodisperse Fe3O4 nanoparticles. RSC Adv. 3:9924-9931; 2013.CrossrefGoogle Scholar

  • [47] Khan JA, Husain Q, Ansari SA. Polyaniline-assisted silver nanoparticles: A novel support for the immobilization of α-amylase. Appl Microbiol Biotechnol. 97:1513-1522; 2013.CrossrefGoogle Scholar

  • [48] Sohrabi N, Rasouli N, Torkzadeh M. Enhanced stability and catalytic activity of immobilized α-amylase on modified Fe3O4 nanoparticles. Chem Eng J. 240:426-433; 2014.Google Scholar

  • [49] Singh V, Kumar P. Carboxymethyl tamarind gum-silica nanohybrids for effective immobilization of amylase. J Mol Catal B: Enzym. 70(1-2):67-73; 2011.CrossrefGoogle Scholar

  • [50] Singh V, Ahmed S. Silver nanoparticle (AgNPs) doped gum acacia-gelatin-silica nanohybrid: An effective support for diastase immobilization. Int J Biol Macromol. 50(2):353-61; 2012.CrossrefGoogle Scholar

  • [51] Singh V, Ahmad S. Carboxymethyl cellulose-gelatin-silica nanohybrid: An efficient carrier matrix for alpha-amylase. Int J Biol Macromol. 67:439-45; 2014.CrossrefGoogle Scholar

  • [52] Swarnalatha V, Esther RA, Dhamodharan R. Immobilization of α-amylase on gum acacia stabilized magnetite nanoparticles, an easily recoverable and reusable support. J Mol Catal B: Enzym. 96:6-13; 2013.CrossrefGoogle Scholar

  • [53] Kalburcu T, Tuzmen MN., Akgol S, Denizli A. Immobilized metal ion affinity nanospheres for α-amylase immobilization. Turk J Chem. 38(1):28-40; 2014.CrossrefGoogle Scholar

  • [54] Saware K, Aurade RM, Jayanthi PDK, Abbaraju V. Modulatory effect of citrate reduced gold and biosynthesized silver nanoparticles on α-amylase activity. J Nanop. Article ID 829718, pages 1-9:2014.Google Scholar

  • [55] Kumar S, Khare SK. Chloride activated Halophilic α-amylase from Marinobacter sp. EMB8: Production optimization and nanoimmobilization for efficient starch hydrolysis. Enzyme Res. 2015:859485; 2015.Google Scholar

  • [56] Antony N, Balachandran S, Mohanan PV. Immobilization of diastase α-amylase on nano zinc oxide. Food Chem. 211:624-630; 2016.Google Scholar

  • [57] Oktay B, Demir S, Kayaman-Apohan N. Immobilization of α-amylase onto poly(glycidyl methacrylate) grafted electrospun fibers by ATRP. Mater Sci Eng C Mater Biol Appl. 50:386-93; 2015.CrossrefGoogle Scholar

  • [58] Baskar G, Banu NF, Leuca GH, Gayathri V, Jeyashree N. Magnetic immobilization and characterization of α-amylase as nanobiocatalyst for hydrolysis of sweet potato starch. Biochem Eng J. 102:18-23; 2015.CrossrefGoogle Scholar

  • [59] Akhond, M, Pashangeh, K, Karbalaei-Heidari, HR, Absalan G. Efficient immobilization of porcine pancreatic α-amylase on amino-functionalized magnetite nanoparticles: Characterization and stability evaluation of the immobilized enzyme. Appl Biochem Biotechnol. 180(5):954-968; 2016.CrossrefGoogle Scholar

  • [60] Singh V, Rakshit K, Rathee S, Angmo S, Kaushal S, Garg P, Chung JH, Sandhir R, Sangwan RS, Singhal N. Metallic/ bimetallic magnetic nanoparticle functionalization for immobilization of α-amylase for enhanced reusability in bio-catalytic processes. Biores Technol. 214:528-33; 2016.Google Scholar

  • [61] Homaei A, Saberi D. Immobilization of α-amylase on gold nanorods: An ideal system for starch processing. Process Biochem. 50(9):1394-1399; 2015.CrossrefGoogle Scholar

  • [62] Eslamipour F, Hejazi P. Evaluating effective factors on the activity and loading of immobilized α-amylase onto magnetic nanoparticles using a response surface-desirability approach. RSC Adv. 6: 20187-20197; 2016.CrossrefGoogle Scholar

  • [63] Tayebi, M., Tavakkoli Yaraki, M., Mogharei, Ahmadieh M, Tahriri M, Vashaee D, Tayebi L. Thioglycolic acid-capped CdS quantum dots conjugated to α-amylase as a fluorescence probe for determination of starch at low concentration. J Fluoresc. 26:1787; 2016.CrossrefGoogle Scholar

  • [64] Talebi M, Vaezifar S, Jafary F, Fazilati M, Motamedi S. Stability improvement of immobilized α-amylase using nano pore zeolite. Iran J Biotech. 14(1): e1261; 2016.Google Scholar

  • [65] Radovanović M, Jugović B, Gvozdenović M, Jokić B, Grgur B, Bugarski B, Knežević-Jugović Z. Immobilization of α-amylase via adsorption on magnetic particles coated with polyaniline. Starch 68(5-6): 427-435; 2016.CrossrefGoogle Scholar

  • [66] Reddy NS, Nimmagadda A, Rao KRSS. An overview of the microbial α-amylase family Afr J Biotechnol. 2(12): 645-648; 2003.Google Scholar

  • [67] Rana N, Walia A, Gaur A. α-amylases from microbial sources and its potential applications in various industries. Nat Acad Sci Lett. 36: 9-17; 2013.CrossrefGoogle Scholar

  • [68] Rani K, Chauhan C. Preparation of Cicer artienium amylase loaded BSA nanoparticles and their bioproteolysis to be used as detergent additive. Bioeng Biosci. 3(5):73-82; 2015.Google Scholar

  • [69] Rani K, Gupta C, Chauhan C. Biodegradation of almond oil driven bovine serum albumin nanoparticles for controlled release of encapsulated pearl millet amylase. Amer J Phytomed Cli Therap. 3(3): 222-230; 2015.Google Scholar

  • [70] Rani K. Washing study of stained woolen fabric with bioactive jasmine oil driven amylase loaded BSANPs-wool shampoo additives. Int J Life Sci Scienti Res. 2(2): 97-101; 2016.Google Scholar

  • [71] Rani K. Washing study of stained woolen fabric (having stains of boot polish and hair color dye) with coconut oil driven amylase loaded EANPs as bioactive nano-wool detergent shampoo additives. Asia J Res Chem. 9(2):85-88; 2016. CrossrefGoogle Scholar

  • [72] Rani K. Washing study of stained woolen fabric with mustard oil driven amylase loaded BSANPs as bioactive nanowool shampoo additives. J. Bio. Innov 5(3): 332-338; 2016.Google Scholar

  • [73] Rani K. Washing study of stained woolen fabric (having stains of boot polish and hair color dye) with coconut oil driven amylase loaded BSANPs as bioactive nano-wool shampoo additives. J Chem Biol Phy Sci Sec A: Chem Sci. 6(2):428-433; 2016.Google Scholar

  • [74] Rani K. Novel washing analysis of stained woolen fabric (having stains of shoe polish and hair color dye) with olive oil driven amylase loaded BSANPs as bioactive nano-wool shampoo additives. Int J Pharma Res Health Sci. 4 (1):1025-1029; 2016.Google Scholar

  • [75] Keskes H, Hamdan K, Damak M, El-Feki AF, Allouche N. In vitro anti-diabetic, anti-obesity and antioxidant proprieties of Juniperus phoenicea L. leaves from Tunisia. Asian Pac J Trop Biomed. 4(2):789-795; 2014.Google Scholar

  • [76] Raghupathi P, Alagesan K, Sankarnarayanan S. Amylase inhibitors: Potential source of anti-diabetic drug discovery from medicinal plants. Int J Pharm Life Sci. 3(2):1407-1412; 2012.Google Scholar

  • [77] Li Y, Chen Y, Xiao C, Chen D, Xiao Y,Mei Z. Rapid screening and identification of α-amylase inhibitors from Garcinia xanthochymus using enzyme-immobilized magnetic nanoparticles coupled with HPLC and MS. J Chromatogr B Analyt Technol Biomed Life Sci. 960:166-73; 2014.Google Scholar

  • [78] Sauer J, Sigurskjold BW, Christensen U, Frandsen TP, Mirgorodskaya E, Harrison M, Roepstor P, Svensson B. Glucoamylase: structure/function relationships, and protein engineering. Biochim Biophys Acta 1543:275-293; 2000.Google Scholar

  • [79] Hu F, Deng C, Zhang X. Development of high performance liquid chromatography with immobilized enzyme onto magnetic nanospheres for screening enzyme inhibitor. J Chrom B. 871(1):67-71; 2008.Google Scholar

  • [80] Konwarh R, Kalita D, Mahanta C, Mandal M, Karak N. Magnetically recyclable, antimicrobial, and catalytically enhanced polymer-assisted “green” nanosystem-immobilized Aspergillus niger amyloglucosidase. Appl Microbiol Biotechnol. 87(6):1983-92; 2010.CrossrefGoogle Scholar

  • [81] Cang-Rong JT, Pastorin G. The influence of carbon nanotubes on enzyme activity and structure: investigation of different immobilization procedures through enzyme kinetics and circular dichroism studies. Nanotechnology 20(25):255102; 2009.CrossrefGoogle Scholar

  • [82] Odaci D, Telefuncu A, Timur S. Maltose biosensing based on co-immobilization of alpha-glucosidase and pyranose oxidase. Bioelectrochemistry 79(1):108-113; 2010.CrossrefGoogle Scholar

  • [83] Zhao G,Wang J, Li Y, Chen, X and Liu Y. Enzymes immobilized on superparamagnetic Fe3O4@clays nanocomposites: Preparation, characterization, and a new strategy for the regeneration of supports. J Phys Chem. C. 115(14):6350-6; 2011.CrossrefGoogle Scholar

  • [84] Zhao G, Li Y, Wang J, Zhu H. Reversible immobilization of glucoamylase onto magnetic carbon nanotubes functionalized with dendrimer. Appl Microbiol Biotechnol. 91(3): 591-601; 2011.CrossrefGoogle Scholar

  • [85] Goh WJ, Makam VS, Hu J, Kang L, Zheng M, Yoong SL, Udalagama CN, Pastorin G. Iron oxide filled magnetic carbon nanotube-enzyme conjugates for recycling of amyloglucosidase: toward useful applications in biofuel production process. Langmuir 28(49):16864-73; 2012.CrossrefGoogle Scholar

  • [86] Gupta K, Jana AK, Kumar S, Maiti M. Immobilization of amyloglucosidase from SSF of Aspergillus niger by crosslinked enzyme aggregate onto magnetic nanoparticles using minimum amount of carrier and characterizations. J Mol Catal B: Enzym. 98:30-36; 2013.CrossrefGoogle Scholar

  • [87] Saylan Y, Uzun L, Denizli A. Alanine functionalized magnetic nanoparticles for reversible amyloglucosidase immobilization. Ind Eng Chem Res. 54(1):454-461;2015.CrossrefGoogle Scholar

  • [88] Panek A, Pietrow O, Synowiecki J. Characterization of glucoamylase immobilized on magnetic nanoparticles. Starch/ Staerke 64(12):1003-1008; 2012.CrossrefGoogle Scholar

  • [89] Ma Y-X, Li Y-F, Zhao G-H, Yang L-Q, Wang J-Z, Shan X, Yan X. Preparation and characterization of graphite nanosheets decorated with Fe3O4 nanoparticles used in the immobilization of glucoamylase. Carbon 50(8):2976-2986; 2012.CrossrefGoogle Scholar

  • [90] Amirbandeh M, Taheri-Kafrani A. Immobilization of glucoamylase on triazine-functionalized Fe3O4/graphene oxide nanocomposite: Improved stability and reusability. Int J Biol Macromol. 93(Pt A):1183-1191; 2016.CrossrefGoogle Scholar

  • [91] Gan Z, Zhang T, Liu Y, Wu D. Temperature-triggered enzyme immobilization and release based on cross-linked gelatin nanoparticles. PLoS One. 7(10):e47154; 2012.CrossrefGoogle Scholar

  • [92] Chen G, Ma Y, Su , P, Fang B. Direct binding glucoamylase onto carboxyl-functioned magnetic nanoparticles. Biochem Eng J. 67:120-125; 2012.CrossrefGoogle Scholar

  • [93] Wang J, Zhao G, Li Y, Liu X, Hou P. Reversible immobilization of glucoamylase onto magnetic chitosan nanocarriers. Appl Microbiol Biotechnol. 97(2):681-92; 2013.CrossrefGoogle Scholar

  • [94] Wang JZ, Zhao GH, Li YF, Peng XM, Li YT. Biocatalytic performance of pH-sensitive magnetic nanoparticles derived from layer-by-layer ionic self-assembly of chitosan with glucoamylase. Chem Asian J. 8(12):3116-22; 2013.CrossrefGoogle Scholar

  • [95] Wang J, Zhao G, Li, Y, Peng X,Wang X. Preparation of aminefunctionalized mesoporous magnetic colloidal nanocrystal clusters for glucoamylase immobilization. Chem Eng J. 263:471-478; 2015.Google Scholar

  • [96] Syed F, Ali K, Asad MJ, Fraz MG, Khan Z, Imran M, Taj R, Ahmad A. Preparation and characterization of a green nano-support for the covalent immobilization of glucoamylase from Neurospora sitophila. J Photochem Photobiol B. 162:309-17; 2016.Google Scholar

  • [97] Long J, Jiao A, Wei B, Wu Z, Zhang Y, Xu X, Jin Z. A novel method for pullulanase immobilized onto magnetic chitosan/Fe3O4 composite nanoparticles by in situ preparation and evaluation of the enzyme stability. J Mol Catal B: Enzym. 109:53-61; 2014.CrossrefGoogle Scholar

  • [98] Alagoz D, Yildirim D, Guvenmez HK, Sihay D, Tukel SS. Covalent immobilization and characterization of a novel pullulanase from Fontibacillus sp. Strain DSHK 107 onto FlorisilR and nano-silica for pullulan hydrolysis. Appl Biochem Biotechnol. 179(7):1262-74; 2016.CrossrefGoogle Scholar

  • [99] Long J, Wu Z, Li X, Xu E, Xu X, Jin Z, Jiao A. New method for the immobilization of pullulanase onto hybrid magnetic (Fe3O4-κ-carrageenan) nanoparticles by electrostatic coupling with pullulanase/chitosan complex. J Agric Food Chem. 63(13):3534-3542; 2015.CrossrefGoogle Scholar

  • [100] Long J, Li X, Z Wu Z, Xu E, Xueming Xu X, Jin Z, Jiao A. Immobilization of pullulanase onto activated magnetic chitosan/Fe3O4 nanoparticles prepared by in situ mineralization and effect of surface functional groups on the stability. Colloid Surf A: Physicochem Eng Asp. 472:69-77; 2015.CrossrefGoogle Scholar

  • [101] Long J, Xu E, Li X, Wu Z, Wang F, Xu X-M, Jin Z-Y, Jiao A, Zhan X. Effect of chitosan molecular weight on the formation of chitosan-pullulanase soluble complexes and their application in the immobilization of pullulanase onto Fe3O4-κ-carrageenan nanoparticles. Food Chem. 202:49-58; 2016.Google Scholar

  • [102] Khan MJ, Khan FH, Husain Q. Application of immobilized Ipomoea batata β amylase in the saccharification of starch. J Appl Biol Sci. 5(2):33-39; 2011.Google Scholar

  • [103] Rejzek M, Stevenson CE, Southard AM, Stanley D, Denyer K, Smith AM, Naldrett MJ, Lawson DM, Field RA. Chemical genetics and cereal starch metabolism: Structural basis of the non-covalent and covalent inhibition of barley β-amylase. Mol BioSys. 7(3):718-730; 2011.CrossrefGoogle Scholar

  • [104] Rasouli N, Sohrabi, N, Zamani E. Influence of a novel magnetic recoverable support on kinetic, stability and activity of beta-amylase enzyme. Phys Chem Res. 4(2):271-283; 2016.Google Scholar

About the article

Received: 2016-10-30

Accepted: 2017-03-07

Published Online: 2017-03-30

Published in Print: 2017-01-01

Citation Information: Biocatalysis, Volume 3, Issue 1, Pages 37–53, ISSN (Online) 2353-1746, DOI: https://doi.org/10.1515/boca-2017-0004.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Faranak Jafarian, Abdol-Khalegh Bordbar, Atefeh Zare, and Ahmadreza Khosropour
International Journal of Biological Macromolecules, 2018, Volume 111, Page 1166
Mohammad Perwez, Razi Ahmad, and Meryam Sardar
International Journal of Biological Macromolecules, 2017, Volume 103, Page 16

Comments (0)

Please log in or register to comment.
Log in