Jump to ContentJump to Main Navigation
Show Summary Details
More options …


1 Issue per year

Open Access
See all formats and pricing
More options …

Novel DyP from the basidiomycete Pleurotus sapidus: substrate screening and kinetics

Alexandru Avram
  • Ralph E. Martin Department ofChemical Engineering, University of Arkansas, Fayetteville, Arkansas, 72701, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Arijit Sengupta
  • Ralph E. Martin Department ofChemical Engineering, University of Arkansas, Fayetteville, Arkansas, 72701, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Peter H. Pfromm / Holger Zorn
  • Institute of Food Chemistry and Food Biotechnology, Justus-Liebig-University Giessen, Heinrich‑Buff‑Ring 17, Giessen, Germany
  • Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project Group Bioresources, Winchesterstrasse 2, Giessen, Germany, 35394
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Patrick Lorenz / Tatjana Schwarz / Khanh Quoc Nguyen / Peter Czermak
  • Corresponding author
  • Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, Giessen, Germany
  • Department of Chemical Engineering, Kansas State University, Manhattan, Kansas, 66506, USA
  • Institute of Food Chemistry and Food Biotechnology, Justus-Liebig-University Giessen, Heinrich‑Buff‑Ring 17, Giessen, Germany
  • Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project Group Bioresources, Winchesterstrasse 2, Giessen, Germany, 35394
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-02-02 | DOI: https://doi.org/10.1515/boca-2018-0001


A novel Dye-decolorizing peroxidase from the basidiomycete Pleurotus sapidus was screened for dyedecolorizing peroxidase activity with 2,2‘-azino-bis(3- ethylbenzothiazoline-6-sulfonic acid), Remazol Brilliant Blue R and Guaiacol. Additionally, the catalytic efficiency on degrading β-carotene into volatile products, and the catalyst storage stability with three different additives were also studied. The apparent inhibition constant (KS) was 51.7 μM. Optimal reaction rates (Vmax) and affinity constants (Km) towards the reducing substrates were obtained using Michaelis-Menten kinetic theory. The trend in the calculated Km’s was found to be 7.0 mM > 0.524 mM > 0.051 mM for Guaiacol, 2,2‘-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and Remazol Brilliant Blue R. The storage stability of the catalyst was evaluated with 7.0% w/v PEG400, 7.0% w/v PEG1450 and 0.1% w/v Tween®80 at 5°C over a period of 45 days. The study revealed the longest activity conservation with PEG1450, where rDyP had lost 30% of initial activity. The enzyme solution presented similar pH and temperature dependence to known fungal dye-decolorizing peroxidases with most prolific enzymatic activities registered at pH 4.0 and temperatures below 30°C. An interesting property of the catalyst was oxidation observed in the absence of hydrogen peroxide.

This article offers supplementary material which is provided at the end of the article.

Keywords : dye-decolorizing peroxidase; enzyme kinetics; two-substrate enzyme; enzyme degradation; catalyst inhibition


  • [1] Liers C., Bobeth C., Pecyna M., Ullrich R., Hofrichter M.,DyP-like peroxidases of the jelly fungus Auricularia auricula-judae oxidize nonphenolic lignin model compounds and high-redox potential dyes, Appl.Microbiol.Biotechnol., 2010, 85, 1869-1879.Google Scholar

  • [2] Gottlieb S., Pelczar M.,Microbiological Aspects of Lignin Degradation, Bacteriol.Rev., 1951, 15, 55-76.Google Scholar

  • [3] Jouanin L., Lapierre C. ,Chapter 8: Fungal Strategies for Ligning Degradation,In: Jacquout J., Gadal P., (Eds.),Lignins: Biosynthesis, Biodegradation and Bioengineering, 1st ed., Academic Press,London,2012.Google Scholar

  • [4] Ratledge C. , Biochemistry of microbial degradation, Springer, Netherlands, 1994.Google Scholar

  • [5] Hofrichter M., Ullrich R., Pecyna M.J., Liers C., Lundell T.,New and classic families of secreted fungal heme peroxidases, Appl. Microbiol.Biotechnol., 2010, 87, 871-897.Google Scholar

  • [6] Sugano Y.,DyP-type peroxidases comprise a novel heme peroxidase family, Cell Mol.Life Sci., 2009, 66, 1387-1403.Google Scholar

  • [7] Sugano Y., Muramatsu R., Ichiyanagi A., Sato T., Shoda M.,DyP, a unique dye-decolorizing peroxidase, represents a novel heme peroxidase family, J.Biol.Chem., 2007, 282, 36652-36658.Google Scholar

  • [8] Linde D., Ruiz-Duenas F.J., Fernandez-Fueyo E., Guallar V., Hammel K.E., Pogni R., Martinez A.T.,Basidiomycete DyPs: Genomic diversity, structural-functional aspects, reaction mechanism and environmental significance, Arch.Biochem. Biophys., 2015, 574, 66-74.Google Scholar

  • [9] Kim S., Shoda M.,Purification and characterization of a novel peroxidase from Geotrichum candidum Dec 1 involved in decolorization of dyes, Appl.Environ.Microbiol., 1999, 65, 1029-1035.Google Scholar

  • [10] Fawal N., Li Q., Savelli B., Brette M., Passaia G., Fabre M., Mathe C., Dunand C.,PeroxiBase: a database for large-scale evolutionary analysis of peroxidases, Nucleic Acids Res., 2013, 41, D441-D444.Google Scholar

  • [11] van Bloois E., Pazmino D.E.T., Winter R.T., Fraaije M.W.,A robust and extracellular heme-containing peroxidase from Thermobifida fusca as prototype of a bacterial peroxidase superfamily, Appl.Microbiol.Biotechnol., 2010, 86, 1419-1430.CrossrefGoogle Scholar

  • [12] Salvachua D., Prieto A., Martinez A.T., Martinez M.J.,Characterization of a Novel Dye-Decolorizing Peroxidase (DyP)-Type Enzyme from Irpex lacteus and Its Application in Enzymatic Hydrolysis of Wheat Straw, Appl.Environ.Microbiol., 2013, 79, 4316-4324.Google Scholar

  • [13] Colpa D., M. F., Bloois E.,DyP-type peroxidases: a promising and versatile class of enzymes, J.Ind.Microbiol.Biotechnol., 2013, 41, 1-7.Google Scholar

  • [14] Shakeri M., Shoda M.,Change in turnover capacity of crude recombinant dye-decolorizing peroxidase (rDyP) in batch and fed-batch decolorization of Remazol Brilliant Blue R, Appl. Microbiol.Biotechnol., 2007, 76, 919-926.CrossrefGoogle Scholar

  • [15] Kim S., Ishikwa K., Hirai M., Shoda M.,Characteristics of a Newly Isolated Fungus, Geotrichum-Candidum Dec-1, which Decolorizes various Dyes, J.Ferment.Bioeng., 1995, 79, 601-607.Google Scholar

  • [16] Zorn H., Langhoff S., Scheibner M., Nimtz M., Berger R.,A peroxidase from Lepista irina cleaves beta,beta-carotene to flavor compounds, Biol.Chem., 2003, 384, 1049-1056.Google Scholar

  • [17] Kang E.J., Campbell R.E., Bastian E., Drake M.A.,Invited review: Annatto usage and bleaching in dairy foods, J.Dairy Sci., 2010, 93, 3891-3901.CrossrefGoogle Scholar

  • [18] M.B. Arnao, M. Acosta, J.A. de Rio,F.Garcia-Canovas,Inactivation of peroxidase by hydrogen peroxide and its protection by a reductant agent, Biochim.Biophys.Acta, 1989, 138, 6.Google Scholar

  • [19] Nicell J.A.,A model of peroxidase activity with inhibition by hydrogen peroxide, Enzyme Microb.Technol., 1997, 21, 10.Google Scholar

  • [20] Ogola H.J.O., Hashimoto N., Miyabe S., Ashida H., Ishikawa T., Shibata H., Sawa Y.,Enhancement of hydrogen peroxide stability of a novel Anabaena sp DyP-type peroxidase by site-directed mutagenesis of methionine residues, Appl. Microbiol.Biotechnol., 2010, 87, 1727-1736.Google Scholar

  • [21] Johannes Everse, Mathew B. Grisham. , Peroxidases in Chemistry and Biology, CRC Press, Boca Raton, 1990.Google Scholar

  • [22] Higuchi T., Umezawa T., Kawai S., Yokota S.,Mechanism of lignin biodegradation by white rot fungi, Abstracts of Papers of the American Chemical Society, 1988, 195, 154-CELL.Google Scholar

  • [23] Tuor U., Winterhalter K., Fiechter A.,Enzymes of White-Rot Fungi Involved in Lignin Degradation and Ecological Determinants for Wood Decay, J.Biotechnol., 1995, 41, 1-17.Google Scholar

  • [24] Higuchi T.,Microbial degradation of lignin: Role of lignin peroxidase, manganese peroxidase, and laccase, Proceedings of the Japan Academy Series B-Physical and Biological Sciences, 2004, 80, 204-214.CrossrefGoogle Scholar

  • [25] Ruiz-Duenas F.J., Martinez A.T.,Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this, Microbial Biotechnology, 2009, 2, 164-177.Google Scholar

  • [26] Camarero S., Sarkar S., Ruiz-Duenas F., Martinez M.J., Martinez A.T.,Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites, J.Biol.Chem., 1999, 274, 10324-10330.Google Scholar

  • [27] Peralta-Zamora P., Kunz A., de Moraes S., Pelegrini R., Moleiro P., Reyes J., Duran N.,Degradation of reactive dyes - I. A comparative study of ozonation, enzymatic and photochemical processes, Chemosphere, 1999, 38, 835-852.CrossrefGoogle Scholar

  • [28] Chang S.H., Chuang S.H., Li H.C., Liang H.H., Huang L.C.,Comparative study on the degradation of IC Remazol Brilliant Blue R and IC Acid Black 1 by Fenton oxidation and Fe-0/air process and toxicity evaluation, J.Hazard.Mater., 2009, 166, 1279-1288.Google Scholar

  • [29] Lauber T., Schwarz T., Nguyen Q., Lorenz P., Lochnit G., Zorn H.,Identification, heterologous expression and characterization of a dye decolorizing peroxidase of Pleurotus sapidus, AMB Express, 2017, .Google Scholar

  • [30] Peterson R., Nevalainen H.,Trichoderma reesei RUT-C30-thirty years of strain improvement, Microbiology-(UK), 2012, 158, 58-68.Google Scholar

  • [31] Scott S., Chen W., Bakac A., Espenson J.,Spectroscopic Parameters, Electrode-Potentials, Acid Ionization-Constants, and Electron-Exchange Rates of the 2,2’-Azinobis(3-Ethylbenzothiazoline- 6-Sulfonate) Radicals and Ions, J.Phys.Chem., 1993, 97, 6710-6714.CrossrefGoogle Scholar

  • [32] Doerge D., Divi R., Churchwell M.,Identification of the colored guaiacol oxidation product produced by peroxidases, Anal. Biochem., 1997, 250, 10-17.Google Scholar

  • [33] Zelena K., Hardebusch B., Huelsdau B., Berger R.G., Zorn H.,Generation of Norisoprenoid Flavors from Carotenoids by Fungal Peroxidases, J.Agric.Food Chem., 2009, 57, 9951-9955.CrossrefGoogle Scholar

  • [34] Scheibner M., Huelsdau B., Zelena K., Nimtz M., de Boer L., Berger R.G., Zorn H.,Novel peroxidases of Marasmius scorodonius degrade beta-carotene, Appl.Microbiol. Biotechnol., 2008, 77, 1241-1250.Google Scholar

  • [35] Brown M.E., Barros T., Chang M.C.Y.,Identification and Characterization of a Multifunctional Dye Peroxidase from a Lignin-Reactive Bacterium, ACS Chem.Biol., 2012, 7, 2074-2081.Google Scholar

  • [36] Abelskov A., Smith A., Rasmussen C., Dunford H., Welinder K.,pH dependence and structural interpretation of the reactions of Coprinus cinereus peroxidase with hydrogen peroxide, ferulic acid, and 2,2’-azinobis(3-ethylbenzthiazoline-6-sulfonic acid), Biochemistry (N.Y.), 1997, 36, 9453-9463.CrossrefGoogle Scholar

  • [37] Singh R., Grigg J.C., Armstrong Z., Murphy M.E.P., Eltis L.D.,Distal Heme Pocket Residues of B-type Dye-decolorizing Peroxidase arginine but not aspartate is essential for peroxidase activity, J.Biol.Chem., 2012, 287, 10623-10630.Google Scholar

  • [38] Sinsabaugh R.L.,Phenol oxidase, peroxidase and organic matter dynamics of soil, Soil Biology & Biochemistry, 2010, 42, 391-404.CrossrefGoogle Scholar

  • [39] van Bloois E., Pazmino D.E.T., Winter R.T., Fraaije M.W.,A robust and extracellular heme-containing peroxidase from Thermobifida fusca as prototype of a bacterial peroxidase superfamily, Appl.Microbiol.Biotechnol., 2010, 86, 1419-1430.Google Scholar

  • [40] VYAS B., MOLITORIS H.,Involvement of an Extracellular H2o2-Dependent Ligninolytic Activity of the White-Rot Fungus Pleurotus-Ostreatus in the Decolorization of Remazol-Brilliant- Blue-R, Appl.Environ.Microbiol., 1995, 61, 3919-3927.Google Scholar

  • [41] Ogola H.J.O., Kamiike T., Hashimoto N., Ashida H., Ishikawa T., Shibata H., Sawa Y.,Molecular Characterization of a Novel Peroxidase from the Cyanobacterium Anabaena sp Strain PCC 7120, Appl.Environ.Microbiol., 2009, 75, 7509-7518.Google Scholar

  • [42] Sugano Y., Matsushima Y., Shoda M.,Complete decolorization of the anthraquinone dye Reactive blue 5 by the concerted action of two peroxidases from Thanatephorus cucumeris Dec 1, Appl.Microbiol.Biotechnol., 2006, 73, 862-871.Google Scholar

  • [43] Cornish-Bowden A. , Fundamentals of Enzyme Kinetics, 4th ed., Wiley-Blackwell, Weinheim, 2014.Google Scholar

  • [44] Fromm H. J. , Initial rate enzme kinetics, 1st ed., Springer- Verlag Berlin, Heidelberg, 1975.Google Scholar

  • [45] Sadana A. , Biocatalysis: Fundamentals of enzyme deactivation kinetics, Prentice Hall, Englewood Cliffs, 1991.Google Scholar

  • [46] Illanes A. , Enzyme biocatalysis: Principles and applications, Springer, Chile, 2008.CrossrefGoogle Scholar

  • [47] Rogers A., Gibon Y. , Enzyme Kinetics: Theory and Practice, Springer, New York, 2009.Google Scholar

  • [48] Duggleby R.G.,Analysis of enzyme progress curves by nonlinear regression, Meth.Enzymol., 1995, 249, 61-86.Google Scholar

  • [49] Gallati H.,Horseradish-Peroxidase - Study of the Kinetics and the Determination of Optimal Reaction Conditions, using Hydrogen-Peroxide and 2,2-Azino-Bis 3-Ethylbenzthiazoline- 6-Sulfonic Acid (Abts) as Substrates, Journal of Clinical Chemistry and Clinical Biochemistry, 1979, 17, 1-7.Google Scholar

  • [50] Eisenthal R., Danson M. , Enzyme Assays: A practical approach, 2nd ed., Oxford University Press, Oxford, 2012.Google Scholar

  • [51] Roberts J.N., Singh R., Grigg J.C., Murphy M.E.P., Bugg T.D.H., Eltis L.D.,Characterization of Dye-Decolorizing Peroxidases from Rhodococcus jostii RHA1, Biochemistry (N.Y.), 2011, 50, 5108-5119.Google Scholar

  • [52] Moreira PR, Almeida-Vara E, Sena-Martins G, Polónia I, Xavier Malcata F, Cardoso Duarte J. Decolourisation of Remazol Brilliant Blue R via a novel Bjerkandera sp. strain. Journal of Biotechnology 2001;89:107-11.DOI:http://dx.doi.org/10.1016/ S0168-1656(01)00320-0.CrossrefGoogle Scholar

  • [53] Shin K., Oh I., Kim C.,Production and Purification of Remazol Brilliant Blue R Decolorizing Peroxidase from the Culture Filtrate of Pleurotus ostreatus, Appl.Environ.Microbiol., 1997, 63, 1744-1748.Google Scholar

  • [54] Heinfling A., Martinez M.J., Martinez A.T., Bergbauer M., Szewzyk U.,Transformation of Industrial Dyes by Manganese Peroxidases from Bjerkandera adusta and Pleurotus eryngii in a Manganese-Independent Reaction, Appl.Environ.Microbiol., 1998, 64, 2788-2793.Google Scholar

  • [55] Heinfling A., Martinez M.J., Martinez A.,T., Bergbauer M., Szewzyk U.,Purification and characterization of peroxidases from the dye-decolorizing fungus Bjerkandera adusta, .Google Scholar

  • [56] Klibanov A.M., Tu T.M., Scott K.P.,Peroxiade-catalzed removal of phenols from coal-conversion waste-waters, Science, 1983, 221, 259-260.Google Scholar

  • [57] Nadine Busse, D. Wagner, M. Kraume, P. Czermak,Reaction Kinetics of Versatile Peroxidase for the Degradation of Lignin Compounds, American Journal of Biochemistry and Biotechnology, 2013, 9, 365-394.Google Scholar

  • [58] Zhi L., Jiang Y., Wang Y., Hu M., Li S., Ma Y.,Effects of additives on the thermostability of chloroperoxidase, Biotechnol.Prog., 2007, 23, 729-733.Google Scholar

  • [59] Iyer P.V., Ananthanarayan L.,Enzyme stability and stabilization - Aqueous and non-aqueous environment, Process Biochemistry, 2008, 43, 1019-1032.Google Scholar

  • [60] Mustafa M.M., Jamal P., Alkhatib M.F., Mahmod S.S., Jimat D.N., Ilyas N.N.,Panus tigrinus as a potential biomass source for Reactive Blue decolorization: Isotherm and kinetic study, EJB, 2017, 26, 7-11.Google Scholar

About the article

Received: 2017-12-03

Accepted: 2018-01-09

Published Online: 2018-02-02

Citation Information: Biocatalysis, Volume 4, Issue 1, Pages 1–13, ISSN (Online) 2353-1746, DOI: https://doi.org/10.1515/boca-2018-0001.

Export Citation

© 2018. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Zahra Anari, Arijit Sengupta, and Sumith Wickramasinghe
International Journal of Environmental Research and Public Health, 2018, Volume 15, Number 8, Page 1561

Comments (0)

Please log in or register to comment.
Log in