Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Botanica Marina

Editor-in-Chief: Dring, Matthew J.

6 Issues per year


IMPACT FACTOR 2016: 1.239
5-year IMPACT FACTOR: 1.373

CiteScore 2016: 1.28

SCImago Journal Rank (SJR) 2016: 0.456
Source Normalized Impact per Paper (SNIP) 2016: 0.841

Online
ISSN
1437-4323
See all formats and pricing
More options …
Volume 48, Issue 5-6 (Dec 2005)

Issues

Screening of marine fungi for lignocellulose-degrading enzyme activities

Wen Luo
  • Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
/ Lilian L.P. Vrijmoed
  • Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
/ E.B. Gareth Jones
  • National Centre for Genetic Engineering and Biotechnology, National Science and Technology Agency, 113 Paholyothin Road, Khlong 1, Khlong Luang, Pathum Thani 12120, Thailand
Published Online: 2005-12-08 | DOI: https://doi.org/10.1515/bot.2005.051

Abstract

Twenty-nine fungal isolates collected from tropical and subtropical mangrove/marine habitats were screened for the presence of lignocellulose-degrading enzyme activities in agar media. These fungi were ascomycetes, except for a basidiomycete, Calathella mangrovei, and a mitosporic fungus, Cirrenalia tropicalis. Endoglucanase and xylanase were the most common enzymes produced. However, none of the fungi exhibited an ability to decolourise Poly-R-478 dye, indicating the lack of ligninolytic peroxidases. Three groups of fungi were categorised according to their cellulolytic, xylanolytic, and ligninolytic enzymes. Group I contained 21 isolates (ca. 72% of the test fungi) able to produce the three enzymes: endoglucanase, xylanase and laccase. Group II comprised 2 isolates lacking the ability to utilise filter paper and/or xylan, whereas Group III consisted of 6 isolates (ca. 21%) with no laccase activity. Five laccase-producing isolates selected for growth on artificial seawater (ASW) agar supplemented with 2,2′-azino-bis-3-ethylbenz-thiazoline-6-sulfonic acid (ABTS), a substrate for this enzyme, exhibited no laccase activity. Further testing in ASW liquid medium with Hypoxylon species B and Halorosellinia oceanica showed that laccase activity was detectable from culture supernatants that had been dialysed against distilled water. Therefore, care is required in assessing laccase activity when using an agar plate assay in the presence of ASW.

Keywords: endoglucanase; laccase; marine fungi; seawater inhibition; xylanase

References

  • Biely, P., M. Vranska and M. Claeyssens. 1991. The endo-1,4-β-glucanase I from Trichoderma reesei: action on β-1,4-oligomers and polymers derived from D-glucose and D-xylose. Euro. J. Biochem. 200 : 157–163.Google Scholar

  • Boominathan, K. and C.A. Reddy. 1992. Fungal degradation of lignin: biotechnological applications. In: (D.K. Arora, R.P. Elander and K.G. Mukerji, eds) Handbook of applied mycology. Vol. 4: Fungal biotechnology. Marcel Dekker, New York. pp. 763–822.Google Scholar

  • Bourbonnais, R. and M.G. Paice. 1990. Oxidation of non-phenolic substrates – an expanded role for laccase in lignin biodegradation. FEBS Lett. 267 : 99–102.Google Scholar

  • Chung, N., I.-S. Lee, H.-S. Song and W.-G. Bang. 2000. Mechanisms used by white-rot fungi to degrade lignin and toxic chemicals. J. Microbiol. Biotechnol. 10 : 737–752.Google Scholar

  • Corbett, N.H. 1965. Micro-morphological studies on the degradation of lignified cell walls by Ascomycetes and Fungi Imperfecti. J. Inst. Wood Sci. 4 : 18–29.Google Scholar

  • Eriksson, K.-E., R.A. Blanchette and P. Ander. 1990. Microbial and enzymatic degradation of wood and wood components. Springer-Verlag, Berlin. pp. 407.Google Scholar

  • Eslyn, W.E., T.K. Kirk and M.J. Effland. 1975. Changes in the chemical composition of wood caused by six soft-rot fungi. Phytopathology 65 : 473–476.Google Scholar

  • Eyzaguire, J., J. Scarpa, A. Belancic and J. Steiner. 1992. The xylanase system of Penicilium purpurogenum. In: (J. Visser, G. Beldman, M.A. Kuster-van Someren and A.G.J. Voragen, eds) Xylans and xylanases. Elsevier, Amsterdam. pp. 505–511.Google Scholar

  • Fenn, P. and T.K. Kirk. 1981. Relationship of nitrogen to the onset and suppression of ligninolytic activity and secondary metabolism in Phanerochaete chrysosporium. Arch. Microbiol. 130 : 59–65.Google Scholar

  • Filho, E.X.F., J. Puls and M.P. Coughlan. 1993. Physicochemical and catalytic properties of a low-molecular-weight endo-1,4,-b-xylanase from Myrothecium verrucaria. Enzy. Microb. Technol. 15 : 535–540.Google Scholar

  • Garzillo, A.M.V., M.C. Colao, C. Caruso, C. Caporale, D. Cellette and V. Buonocore. 1998. Laccase from the white-rot fungus Trametes trogii. Appl. Microbiol. Biotechnol. 49 : 545–551.Google Scholar

  • Gianfreda, L., F. Xu and J.-M. Bollag. 1999. Laccases: a useful group of oxidoreductive enzymes. Bioremed. J. 3 : 1–25.Google Scholar

  • Gold, M.H., J.K. Glenn and M. Alic. 1988. Use of polymeric dyes in lignin biodegradation assays. Methods Enzymol. 161 : 74–78.Google Scholar

  • Haider, K. and J. Trojanowski. 1975. Decomposition of specifically 14C-labelled phenols and dehydropolymers of coniferyl alcohol as models for lignin degradation by soft and white rot fungi. Arch. Microbiol. 105 : 33–41.Google Scholar

  • Hatakka, A. 1994. Lignin-modifying enzymes from selected white-rot fungi: production and role in lignin degradation. FEMS Microbiol. Rev. 13 : 125–135.Google Scholar

  • Hyde, K.D., V.V. Sarma and E.B.G. Jones. 2000. Morphology and taxonomy of higher marine fungi. In: (K.D. Hyde and S.B. Pointing, eds) Marine mycology: a practical approach. Fungal diversity research series 1. Fungal Diversity Press, Hong Kong. pp. 171–204.Google Scholar

  • Jones, E.B.G. 1993. Tropical marine fungi. In: (S. Issac, J.C. Fankland, R. Watling and A.J.S. Whalley, eds) Aspects of tropical mycology. Cambridge University Press, Cambridge. pp. 73–90.Google Scholar

  • Kerr, A.J. and D.A.I. Goring. 1975. The ultrastructural arrangement of the wood cell wall. Cellul. Chem. Technol. 9 : 563–573.Google Scholar

  • Kersten, P.J., B. Kalyanaraman, K.E. Hammel, B. Reinhammer and T.K. Kirk. 1990. Comparison of lignin peroxidase, horseradish peroxidase and laccase in the oxidation of methoxybenzenes. Biochem. J. 268 : 475–480.Google Scholar

  • Keyser, P., T.K. Kirk and J.G. Zeikus. 1978. Ligninolytic enzyme system of Phanerochaete chrysosporium: synthesized in the absence of lignin in response to nitrogen starvation. J. Bacteriol. 135 : 790–797.Google Scholar

  • Koudelka, G.B. and M.J. Ettinger. 1988. Fluoride effects on the activity of Rhus laccase and the catalytic mechanism under steady-state conditions. J. Biol. Chem. 263 : 3698–3705.Google Scholar

  • Kuwahara, M., J.K. Glenn, M.A. Morgan and M.H. Gold. 1984. Separation and characterization of two extracellular H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett. 169 : 247–250.Google Scholar

  • Lappalainen, A. 1986. Purification and characterization of xylanolytic enzymes from Trichoderma reesei. Biotechnol. Appl. Biochem. 8 : 437–448.Google Scholar

  • Leightley, L.E. 1980. Wood decay activities of marine fungi. Bot. Mar. 23 : 387–395.Google Scholar

  • Li, K., F. Xu and K.-E. Eriksson. 1999. Comparison of fungal laccases and redox mediators in oxidation of a nonphenolic lignin model compound. Appl. Env. Microbiol. 65 : 2654–2660.Google Scholar

  • Lyman, J. and R.H. Fleming. 1940. Composition of sea water. J. Mar. Res. 3 : 134–136.Google Scholar

  • Mayer, A.M. and R.C. Staples. 2002. Laccase: new functions for an old enzyme. Phytochemistry 60 : 551–565.PubMedCrossrefGoogle Scholar

  • Mishra, C., S. Keskar and M. Rao. 1984. Production and properties of extracellular endoxylanase from Neurospora crassa. Appl. Env. Microbiol. 48 : 224–228.Google Scholar

  • Mouzouras, R. 1989. Decay of mangrove wood by marine fungi. Bot. Mar. 32 : 65–69.Google Scholar

  • Niku-Paavola, M.L., L. Raaska and M. Itavaara. 1990. Detection of white rot fungi by a non-toxic stain. Mycol. Res. 94 : 27–31.Google Scholar

  • Nilsson, T., G. Daniel, T.K. Kirk and J.R. Obst. 1989. Chemistry and microscopy of wood decay by some higher Asco-mycetes. Holzforschung 43 : 11–18.CrossrefGoogle Scholar

  • Ollikka, P., K. Alhonmaki, V. Leppanen, T. Glumoff, T. Raijola and V.M. Suominen. 1993. Decolourisation of azo, triphenyl methane, heterocyclic, and polymeric dyes by lignin peroxidase isoenzymes from Phanerochaete chrysosporium. Appl. Env. Microbiol. 59 : 4010–4016.Google Scholar

  • Phillips, L.E. and T.J. Leonard. 1976. Benzidine as a substrate for measuring phenoloxidase activity in crude cell-free extracts of Schizophyllum commune. Mycologia 68 : 277–285.Google Scholar

  • Pointing, S.B., L.L.P. Vrijmoed and E.B.G. Jones. 1998. A qualitative assessment of lignocellulose degrading enzyme activity in marine fungi. Bot. Mar. 41 : 293–298.Google Scholar

  • Raghukumar, C., S. Raghukumar, A. Chinnaraj, D. Chandramohan, T.M. D'Souza and C.A. Reddy. 1994. Laccase and other lignocellulose modifying enzymes of marine fungi isolated from the coast of India. Bot. Mar. 37 : 515–523.Google Scholar

  • Rohrmann, S. and H.P. Molitoris. 1992. Screening of wood-degrading enzymes in marine fungi. Can. J. Bot. 70 : 2116–2123.Google Scholar

  • Sutherland, J.B., D.L. Crawford and M.K. Speedie. 1982. Decomposition of 14C-labeled maple and spruce lignin by marine fungi. Mycologia 74 : 511–513.Google Scholar

  • Teather, R.M. and P.J. Wood. 1982. Use of Congo-red-polysaccharide interactions in enumeration and characterisation of cellulolytic bacteria from the bovine rumen. Appl. Env. Microbiol. 43 : 777–780.Google Scholar

  • Tien, M. and T.K. Kirk. 1988. Lignin peroxidase of Phanerochaete chrysosporium. Methods Enzymol. 161 : 238–249.Google Scholar

  • Tuor, U., K. Winterhalter and A. Fiechter. 1995. Enzymes of white-rot fungi involved in lignin degradation and ecological determinants for wood decay. J. Biotechnol. 41 : 1–17.Google Scholar

  • Wesenberg, D., I. Kyriakides and S.N. Agathos. 2003. White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol. Adv. 22 : 161–187.Google Scholar

  • Whalley, A.J.S., E.B.G. Jones and S.A. Alias. 1994. The Xylariaceae (Ascomycetes) of mangroves in Malaysia and South East Asia. Nova Hedwigia 59 : 207–218.Google Scholar

  • Wood, T.M. and K.M. Bhat. 1988. Methods for measuring cellulase activities. Methods Enzymol. 160 : 87–126.Google Scholar

  • Worrall, J.J., S.E. Anagnost and R.A. Zabel. 1997. Comparison of wood decay among diverse lignicolous fungi. Mycologia 89 : 199–219.Google Scholar

  • Xu, F. 1996. Oxidation of phenols, anilines, and benzenethiols by fungal laccases: correlation between activity and redox potentials as well as halide inhibition. Biochemistry 35 : 7608–7614.CrossrefPubMedGoogle Scholar

About the article

Corresponding author


Received: 2005-03-21

Accepted: 2005-10-19

Published Online: 2005-12-08

Published in Print: 2005-12-01


Citation Information: Botanica Marina, ISSN (Online) 1437-4323, ISSN (Print) 0006-8055, DOI: https://doi.org/10.1515/bot.2005.051.

Export Citation

©2005 by Walter de Gruyter Berlin New York. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in