Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Botanica Marina

Editor-in-Chief: Dring, Matthew J.

6 Issues per year


IMPACT FACTOR 2016: 1.239
5-year IMPACT FACTOR: 1.373

CiteScore 2016: 1.28

SCImago Journal Rank (SJR) 2016: 0.456
Source Normalized Impact per Paper (SNIP) 2016: 0.841

Online
ISSN
1437-4323
See all formats and pricing
More options …
Volume 48, Issue 5-6 (Dec 2005)

Issues

Evidence for vertical growth in Zostera noltii Hornem.

Fernando G. Brun
  • Departamento de Biología, Área de Ecología, Universidad de Cádiz, Facultad de Ciencias del Mar y Ambientales, 11510 Puerto Real, Cádiz, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Juan J. Vergara
  • Departamento de Biología, Área de Ecología, Universidad de Cádiz, Facultad de Ciencias del Mar y Ambientales, 11510 Puerto Real, Cádiz, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ignacio Hernández
  • Departamento de Biología, Área de Ecología, Universidad de Cádiz, Facultad de Ciencias del Mar y Ambientales, 11510 Puerto Real, Cádiz, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ J. Lucas Pérez-Lloréns
  • Departamento de Biología, Área de Ecología, Universidad de Cádiz, Facultad de Ciencias del Mar y Ambientales, 11510 Puerto Real, Cádiz, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2005-12-08 | DOI: https://doi.org/10.1515/bot.2005.059

Abstract

We report first evidence for rhizome vertical growth (driven by sediment burial) in the temperate seagrass Zostera noltii. The study was carried out in a population of Z. noltii occurring on the intertidal sandflats of Cádiz Bay Natural Park (Spain), an area subjected to episodic events of a high sediment transport driven by wind. In surveyed plants of Z. noltii, rhizomatic vertical growth was observed (9 cm maximum, 6.1±0.31 cm average) with shorter internodes and longer leaf-sheaths (0.74±0.05 cm and 10.1±0.5 cm, respectively) than those recorded for horizontal rhizomes (2.2±0.05 cm and 3.3±0.18 cm, respectively). Mean vertical rhizome growth rate, calculated from reconstructive techniques (0.083±0.003 cm d-1), is half than that estimated for horizontal rhizome growth (0.15±0.008 cm d-1) using the punching method. Vertical nodes lacked shoots, and resumed horizontal growth and shoot recruitment once the meristem reached the sediment surface. Plasticity in this trait allowed Z. noltii populations to withstand moderate burial in this highly dynamic environment.

Keywords: burial; phenotypic plasticity; seagrass; vertical growth; Zostera noltii

References

  • Alpert, P. and E. Simms. 2002. The relative advantages of plasticity and fixity in different environments: when is it good for a plant to adjust? Evol. Ecol. 16 : 285–297.Google Scholar

  • Brun, F.G., J.L. Pérez-Lloréns, I. Hernández and J.J. Vergara. 2003. Patch distribution and within-patch dynamics of the seagrass Zostera noltii Hornem. in Los Toruños salt-marhs, Cádiz Bay, Natural Park, Spain. Bot. Mar . 46 : 513–524.Google Scholar

  • Brun, F.G., A. Pérez-Pastor, I. Hernández, J.J. Vergara and J.L. Pérez-Lloréns. In press. Ecological implications of shoot organization in the seagrass Zostera noltii. Helgol. Mar. Res.Google Scholar

  • den Hartog, C. 1970. The seagrasses of the world. North-Holland Co, Amsterdam/London. pp. 275.Google Scholar

  • DeWitt, T.J., A. Sih and D.S. Wilson. 1998. Costs and limits of phenotypic plasticity. Trends. Ecol. Evol. 13 : 77–81.Google Scholar

  • Duarte, C.M. 1991. Allometric scaling of seagrass form and productivity. Mar. Ecol. Prog. Ser. 67 : 201–207.Google Scholar

  • Duarte, C.M., J. Terrados, N.S.W. Agawin, M.D. Fortes, S. Bach and W.J. Kenworthy. 1997. Response of a mixed Philippine seagrass meadow to experimental burial. Mar. Ecol. Prog. Ser. 147 : 285–294.Google Scholar

  • Hemminga, M.A. and C.M. Duarte. 2000. Seagrass ecology. Cambridge University Press, Cambridge. pp. 298.Google Scholar

  • Jacobs, R.P.W.M, C. den Hartog, B.F. Braster and F.C. Carrière. 1981. Grazing of the seagrass Zostera noltii by birds at Terschelling (Dutch Wadden Sea). Aquat. Bot. 10 : 241–259.Google Scholar

  • Kenworthy, W.J. and A.C. Schwarzschild. 1998. Vertical growth and short-shoot demography of Syringodium filiforme in outer Florida Bay, USA. Mar. Ecol. Prog. Ser. 173 :25–37.Google Scholar

  • Kuo, J. 1978. Morphology, anatomy and histochemistry of the Australian seagrasses of the genus Posidonia Konig (Posidoniaceae). I. Leaf blade and leaf sheath of Posidonia australis Hook. f. Aquat. Bot. 5 : 171–190.Google Scholar

  • Marbà, N. and C.M. Duarte. 1994. Growth response of the seagrass Cymodocea nodosa to experimental burial and erosion. Mar. Ecol. Prog. Ser. 107 : 307–311.Google Scholar

  • Marbà, N. and C.M. Duarte. 1998. Rhizome elongation and seagrass clonal growth. Mar. Ecol. Prog. Ser. 174 : 269–280.Google Scholar

  • Marbà, N., J. Cebrián, S. Enríquez and C.M. Duarte. 1994a. Migration of large-scale subaqueous bedforms measured with seagrasses (Cymodocea nodosa) as tracers. Limnol. Oceanogr. 39 : 126–133.Google Scholar

  • Marbà, N., M.E. Gallegos, M. Merino and C.M. Duarte. 1994b. Vertical growth of Thalassia testudinum: seasonal and interannual variability. Aquat. Bot. 47 : 1–11.Google Scholar

  • Patriquin, D.G. 1973. Estimation of growth rate, production and age of the marine angisoperm Thalassia testudinum Konig. Caribb. J. Sci. 13 : 111–123.Google Scholar

  • Peralta, G., J.L. Pérez-Lloréns, I. Hernández, J.J. Vergara, A. Bartual, F.G. Brun, J.A. Gálvez and C.M. García. 2000. Morphological and physiological differences of two morphotypes of Zostera noltii Hornem. from the southwestern Iberian Peninsula. Helgol. Mar. Res. 54 : 80–86.Google Scholar

  • Peralta, G., F.G. Brun, I. Hernández, J.J. Vergara, J.L. Pérez-Lloréns. 2005. Acclimation mechanism in the seagrass Zostera noltii: biological effects of coastal engineering. Estuar. Coast. Shelf. Sci. 64 : 347–356.Google Scholar

  • Robertson, A.I. and K.H. Mann. 1984. Disturbance by ice and life-history adaptations of the seagrass Zostera marina. Mar. Biol. 80 : 131–141.Google Scholar

  • Terrados, J. 1997. Is light involved in the vertical growth response of seagrasses when buried by sand? Mar. Ecol. Prog. Ser. 152 : 295–299.Google Scholar

  • Tomlinson, P.B. 1974. Vegetative morphology and meristem dependence. The foundation of productivity in seagrasses. Aquaculture 4 : 107–130.CrossrefGoogle Scholar

  • Tyerman, S.D. 1989. Solute and water relationship of seagrasses. In: (A.W.D. Larkum, A.J. McComb and S.A. Shepherd, eds) Biology of seagrasses. Elsevier, Amsterdam. pp. 723–1759.Google Scholar

  • Vermaat, J.E., N.S.R. Agawin, C.M. Duarte, S. Enríquez, M.D. Fortes, N. Marbà, J.S. Uri and W. van Vierssen. 1997. The capacity of seagrasses to survive increased turbidity and siltation: the significance of growth form and light use. Ambio 26 : 499–504.Google Scholar

  • Woodroffe, C.D. 2002. Coasts. Form, process and evolution. Cambridge University Press, Cambridge. pp. 623.Google Scholar

  • Zar, J.H. 1984. Biostatistical analysis. 2nd edition. Prentice-Hall, Englewood Cliffs, N.J. pp. 718.Google Scholar

About the article

Corresponding author


Received: 2005-05-05

Accepted: 2005-10-07

Published Online: 2005-12-08

Published in Print: 2005-12-01


Citation Information: Botanica Marina, ISSN (Online) 1437-4323, ISSN (Print) 0006-8055, DOI: https://doi.org/10.1515/bot.2005.059.

Export Citation

©2005 by Walter de Gruyter Berlin New York. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Melita Mokos, Stewart T. Schultz, Ivana Zubak, and Claudia Kruschel
Marine Ecology, 2017, Volume 38, Number 3, Page e12438
[2]
Q Han, TJ Bouma, FG Brun, W Suykerbuyk, and MM van Katwijk
Marine Ecology Progress Series, 2012, Volume 449, Page 133
[3]
J. Figueiredo da Silva, R.W. Duck, and J.B. Catarino
Journal of Sea Research, 2009, Volume 62, Number 4, Page 276
[4]
Susana Cabaço, Rui Santos, and Martin Sprung
Marine Ecology, 2012, Volume 33, Number 3, Page 280
[5]
Fernando G. Brun, Elleke van Zetten, Eva Cacabelos, and Tjeerd J. Bouma
Helgoland Marine Research, 2009, Volume 63, Number 1, Page 19
[7]
Fernando G. Brun, Fabio Cummaudo, Irene Olivé, Juan José Vergara, and José Lucas Pérez-Lloréns
Marine Biology, 2007, Volume 151, Number 5, Page 1917

Comments (0)

Please log in or register to comment.
Log in