Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Botanica Marina

Editor-in-Chief: Dring, Matthew J.


IMPACT FACTOR 2018: 0.919
5-year IMPACT FACTOR: 1.336

CiteScore 2018: 1.22

SCImago Journal Rank (SJR) 2018: 0.399
Source Normalized Impact per Paper (SNIP) 2018: 0.672

Online
ISSN
1437-4323
See all formats and pricing
More options …
Volume 52, Issue 6

Issues

Light and temperature demands of marine benthic microalgae and seaweeds in polar regions

Iván Gómez / Angela Wulff
  • Department of Marine Ecology, University of Gothenburg, P.O. Box 461, SE-405 30 Göteborg, Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michael Y. Roleda / Pirjo Huovinen / Ulf Karsten
  • Institute of Biological Sciences, Applied Ecology, University of Rostock, Albert-Einstein-Strasse 3, D-18057 Rostock, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ María Liliana Quartino
  • Departamento de Ciencias del Mar, Instituto Antártico Argentino, Dirección Nacional del Antártico, Cerrito 1248 - C1010AAZ - Buenos Aires, Argentina
  • Museo Argentino de Ciencias Naturales “B. Rivadavia”, Av. A. Gallardo 470 - C1405DJR - Buenos Aires, Argentina
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ken Dunton
  • Marine Science Institute, University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christian Wiencke
  • Department Seaweed Biology, Section Functional Ecology, Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar

Abstract

Polar algae have a striking ability to photosynthesize and grow under very low light and temperatures. In seaweeds, minimum light demands for photosynthetic saturation and compensation can be as low as 10 and 2 μmol photons m-2 s-1, respectively. For benthic microalgae, these values can be even lower because of the limited irradiance reaching deep sea floors. The extreme shade adaptation of these organisms sets their distributional limits at depths close to 40 m and enables them to tolerate long periods of extended darkness. In addition to their capability for efficient photosynthesis at extremely low light levels, polar algae possess metabolic adaptations to persist at low temperatures, which permit them to complete their life cycles at year-round temperatures close to 0°C. Seaweeds with the lowest temperature demands are the species endemic to the Antarctic while Arctic algae are comparatively less cold-adapted. These adaptive characteristics allow benthic marine algae to make high contributions to high latitude coastal primary productivity and energy fluxes, exceeding or equaling the production of primary producers in more temperate systems. The studies summarized here give important insights into the major physiological adaptations allowing marine benthic microalgae and seaweeds to colonize these extreme habitats.

Keywords: algae; Antarctic; Arctic; light; temperature

About the article

Corresponding author


Received: 2009-02-06

Accepted: 2009-05-04

Published in Print: 2009-12-01


Citation Information: Botanica Marina, Volume 52, Issue 6, Pages 593–608, ISSN (Online) 1437-4323, ISSN (Print) 0006-8055, DOI: https://doi.org/10.1515/BOT.2009.073.

Export Citation

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[3]
Martin Paar, Camille de la Vega, Sabine Horn, Ragnhild Asmus, and Harald Asmus
Ocean & Coastal Management, 2019, Volume 167, Page 60
[4]
Kathryn M. Schoenrock, Marion Bacquet, Danni Pearce, Brice R. Rea, J. Edward Schofield, James Lea, Doug Mair, Nicholas Kamenos, and C. Amsler
Journal of Phycology, 2018
[5]
Georgina Cordone, Tomás I. Marina, Vanesa Salinas, Santiago R. Doyle, Leonardo A. Saravia, and Fernando R. Momo
PeerJ, 2018, Volume 6, Page e5531
[8]
Pamela Alvarado, Ying Huang, Jian Wang, Ignacio Garrido, and Sergio Leiva
Antonie van Leeuwenhoek, 2018
[9]
Natalia Shunatova, Daria Nikishina, Mikhail Ivanov, Jørgen Berge, Paul E. Renaud, Tatiana Ivanova, and Andrei Granovitch
Polar Biology, 2018
[10]
Aleksandra Kruss, Jarosław Tęgowski, Agnieszka Tatarek, Józef Wiktor, and Philippe Blondel
Polish Polar Research, 2017, Volume 38, Number 2
[11]
João N. Franco, Fernando Tuya, Iacopo Bertocci, Laura Rodríguez, Brezo Martínez, Isabel Sousa-Pinto, Francisco Arenas, and Kathy Van Alstyne
Journal of Ecology, 2017
[12]
Marco Ortiz, Brenda Hermosillo-Nuñez, Jorge González, Fabián Rodríguez-Zaragoza, Iván Gómez, and Ferenc Jordán
Ecological Indicators, 2017, Volume 81, Page 453
[13]
Nelson Valdivia, María José Díaz, Ignacio Garrido, Iván Gómez, and Andrew R. Mahon
PLOS ONE, 2015, Volume 10, Number 9, Page e0138582
[14]
María Liliana Quartino, Dolores Deregibus, Gabriela Laura Campana, Gustavo Edgar Juan Latorre, Fernando Roberto Momo, and Lee A. Newsom
PLoS ONE, 2013, Volume 8, Number 3, Page e58223
[15]
Marco A. Z. Santos, Pio Colepicolo, Dicla Pupo, Mutue T. Fujii, Claudio M. P. de Pereira, and Marcia F. Mesko
Journal of Applied Phycology, 2017, Volume 29, Number 2, Page 759
[17]
Atefeh Alipourzadeh, Mohammad Reza Mehrnia, Ahmad Hallaj Sani, and Azadeh Babaei
RSC Adv., 2016, Volume 6, Number 112, Page 111182
[18]
Marina Cvetkovska, Norman P. A. Hüner, and David Roy Smith
Polar Biology, 2017, Volume 40, Number 6, Page 1169
[19]
Joanne M. Oakes, Søren Rysgaard, Ronnie N. Glud, and Bradley D. Eyre
Limnology and Oceanography, 2016, Volume 61, Number 6, Page 2296
[20]
Marco Ortiz, Fernando Berrios, Jorge González, Fabián Rodríguez-Zaragoza, and Iván Gómez
Ecological Complexity, 2016, Volume 28, Page 145
[21]
María Rosa Flores-Molina, Ralf Rautenberger, Pamela Muñoz, Pirjo Huovinen, and Iván Gómez
Photochemistry and Photobiology, 2016, Volume 92, Number 3, Page 455
[22]
Jenny Ask, Owen Rowe, Sonia Brugel, Mårten Strömgren, Pär Byström, and Agneta Andersson
Ambio, 2016, Volume 45, Number 6, Page 635
[23]
Nelso P. Navarro, Pirjo Huovinen, and Iván Gómez
Revista Chilena de Historia Natural, 2016, Volume 89, Number 1
[24]
Kathryn M. Schoenrock, Julie B. Schram, Charles D. Amsler, James B. McClintock, Robert A. Angus, and Yogesh K. Vohra
Journal of Experimental Marine Biology and Ecology, 2016, Volume 474, Page 58
[25]
[26]
Ralf Rautenberger, Pirjo Huovinen, and Iván Gómez
Marine Biology, 2015, Volume 162, Number 5, Page 1087
[27]
D. Deregibus, M. L. Quartino, G. L. Campana, F. R. Momo, C. Wiencke, and K. Zacher
Polar Biology, 2016, Volume 39, Number 1, Page 153
[28]
Kathryn M. Schoenrock, Julie B. Schram, Charles D. Amsler, James B. McClintock, and Robert A. Angus
Marine Biology, 2015, Volume 162, Number 2, Page 377
[29]
Xu Gao, Hikaru Endo, and Yukio Agatsuma
Journal of Applied Phycology, 2015, Volume 27, Number 3, Page 1263
[31]
Graeme F. Clark, Jonathan S. Stark, Emma L. Johnston, John W. Runcie, Paul M. Goldsworthy, Ben Raymond, and Martin J. Riddle
Global Change Biology, 2013, Volume 19, Number 12, Page 3749
[32]
Katharina Kebelmann, Andreas Hornung, Ulf Karsten, and Gareth Griffiths
Journal of Analytical and Applied Pyrolysis, 2013, Volume 104, Page 131
[33]
Ralf Rautenberger, Christian Wiencke, and Kai Bischof
Polar Biology, 2013, Volume 36, Number 12, Page 1779
[34]
Daniel W. Pritchard, Catriona L. Hurd, John Beardall, Christopher D. Hepburn, and C. Harley
Journal of Phycology, 2013, Page n/a
[36]
Pirjo Huovinen and Iván Gómez
Polar Biology, 2013, Volume 36, Number 9, Page 1319
[37]
F. Tala, I. Gómez, G. Luna-Jorquera, and M. Thiel
Marine Biology, 2013, Volume 160, Number 6, Page 1339
[38]
Michael J. Polito, Christian S. Reiss, Wayne Z. Trivelpiece, William P. Patterson, and Steven D. Emslie
Marine Biology, 2013, Volume 160, Number 6, Page 1311
[39]
Dorte Krause-Jensen, Núria Marbà, Birgit Olesen, Mikael K. Sejr, Peter Bondo Christensen, João Rodrigues, Paul E. Renaud, Thorsten J.S. Balsby, and Søren Rysgaard
Global Change Biology, 2012, Volume 18, Number 10, Page 2981
[40]
Tania Spurkland and Katrin Iken
Journal of Coastal Research, 2011, Volume 275, Page 133
[41]
Eva Rothäusler, Iván Gómez, Ulf Karsten, Fadia Tala, and Martin Thiel
Journal of Experimental Marine Biology and Ecology, 2011, Volume 405, Number 1-2, Page 33
[42]
Pirjo Huovinen and Iván Gómez
Continental Shelf Research, 2011, Volume 31, Number 3-4, Page 254
[43]
Eva Rothäusler, Iván Gómez, Iván A. Hinojosa, Ulf Karsten, Fadia Tala, and Martin Thiel
Journal of Phycology, 2011, Volume 47, Number 2, Page 269
[44]
Christian Wiencke and Margaret N. Clayton
Botanica Marina, 2009, Volume 52, Number 6
[45]
Christian Wiencke, Iván Gómez, and Ken Dunton
Botanica Marina, 2009, Volume 52, Number 6
[46]
Christian Wiencke and Margaret N. Clayton
Botanica Marina, 2009, Volume 52, Number 6
[47]
Susanne Becker, Bettina Walter, and Kai Bischof
Botanica Marina, 2009, Volume 52, Number 6
[48]
Angela Wulff, Katrin Iken, María Liliana Quartino, Adil Al-Handal, Christian Wiencke, and Margaret N. Clayton
Botanica Marina, 2009, Volume 52, Number 6
[49]
Gabriela Laura Campana, Katharina Zacher, Anna Fricke, Markus Molis, Angela Wulff, María Liliana Quartino, and Christian Wiencke
Botanica Marina, 2009, Volume 52, Number 6
[50]
Ruth Müller, Thomas Laepple, Inka Bartsch, and Christian Wiencke
Botanica Marina, 2009, Volume 52, Number 6
[51]
Katharina Zacher, Ralf Rautenberger, Dieter Hanelt, Angela Wulff, and Christian Wiencke
Botanica Marina, 2009, Volume 52, Number 6

Comments (0)

Please log in or register to comment.
Log in