Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Botanica Marina

Editor-in-Chief: Dring, Matthew J.

6 Issues per year


IMPACT FACTOR 2017: 0.989
5-year IMPACT FACTOR: 1.204

CiteScore 2017: 1.00

SCImago Journal Rank (SJR) 2017: 0.297
Source Normalized Impact per Paper (SNIP) 2017: 0.454

Online
ISSN
1437-4323
See all formats and pricing
More options …
Volume 53, Issue 2

Issues

Effects of elevated CO2 and phosphorus supply on growth, photosynthesis and nutrient uptake in the marine macroalga Gracilaria lemaneiformis (Rhodophyta)

Zhiguang Xu / Dinghui Zou
  • The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education of China, College of Environmental Science and Engineering, South China University of Technology, Guangzhou, 510006, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kunshan Gao
  • State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2010-02-12 | DOI: https://doi.org/10.1515/BOT.2010.012

Abstract

The red alga Gracilaria lemaneiformis was cultured under different CO2 and phosphorus conditions for 16 days, and its growth, photosynthesis and uptake of nitrate and phosphate were examined in order to establish the longer-term impacts of elevated CO2 and phosphorus supplies on this economically important seaweed. Enrichment with either CO2 or phosphorus in culture markedly increased the growth of G. lemaneiformis compared to the control. Light-saturated photosynthetic rate was enhanced significantly by phosphorus enrichment, but hardly affected by the elevation of CO2 when G. lemaneiformis was grown under low phosphorus conditions. High phosphorus stimulated photosynthetic inorganic carbon utilization and nitrogen uptake. Under low phosphorus conditions, the thalli grown at the high level of CO2 had a lower carbon utilization capacity and a higher nitrogen uptake rate compared to those grown under ambient CO2. Reversed results were found when the algae were grown under high phosphorus conditions. Hence, available phosphorus may regulate inorganic carbon utilization of G. lemaneiformis grown at different CO2 levels, and growth reflected a balance between carbon and nutrient metabolism.

Keywords: CO2; Gracilaria lemaneiformis; growth; phosphorus; photosynthesis

About the article

Corresponding author


Received: 2009-07-18

Accepted: 2009-10-28

Published Online: 2010-02-12

Published in Print: 2010-04-01


Citation Information: Botanica Marina, Volume 53, Issue 2, Pages 123–129, ISSN (Online) 1437-4323, ISSN (Print) 0006-8055, DOI: https://doi.org/10.1515/BOT.2010.012.

Export Citation

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Adriana Rodríguez, Sabrina Clemente, Alberto Brito, and José Carlos Hernández
Marine Environmental Research, 2018
[2]
Marina Sanz-Martín, Melissa Chierici, Elena Mesa, Paloma Carrillo-de-Albornoz, Antonio Delgado-Huertas, Susana Agustí, Marit Reigstad, Svein Kristiansen, Paul F. J. Wassmann, and Carlos M. Duarte
Frontiers in Marine Science, 2018, Volume 5
[4]
JB Schram, KM Schoenrock, JB McClintock, CD Amsler, and RA Angus
Marine Ecology Progress Series, 2017, Volume 581, Page 45
[5]
Yun Liu, Xiuxian Song, Xihua Cao, and Zhiming Yu
Journal of Plankton Research, 2013, Volume 35, Number 1, Page 165
[7]
Zhiguang Xu, Guang Gao, Juntian Xu, and Hongyan Wu
Biogeosciences, 2017, Volume 14, Number 3, Page 671
[8]
Johan Ceusters, Christof Godts, Darin Peshev, Rudy Vergauwen, Natalia Dyubankova, Eveline Lescrinier, Maurice P. De Proft, and Wim Van den Ende
Journal of Experimental Botany, 2013, Volume 64, Number 6, Page 1497
[9]
Chang-Feng Qu, Fang-Ming Liu, Zhou Zheng, Yi-Bin Wang, Xue-Gang Li, Hua-Mao Yuan, Ning Li, Mei-Ling An, Xi-Xi Wang, Ying-Ying He, Lu-Lu Li, and Jin-Lai Miao
Marine Pollution Bulletin, 2017, Volume 120, Number 1-2, Page 184
[10]
Amit Kumar, Hamada AbdElgawad, Immacolata Castellano, Maurizio Lorenti, Massimo Delledonne, Gerrit T. S. Beemster, Han Asard, Maria Cristina Buia, and Anna Palumbo
Frontiers in Plant Science, 2017, Volume 8
[11]
Dorothea Bender-Champ, Guillermo Diaz-Pulido, and Sophie Dove
Harmful Algae, 2017, Volume 65, Page 40
[13]
Mark Olischläger, Concepción Iñiguez, Kristina Koch, Christian Wiencke, and Francisco Javier López Gordillo
Planta, 2017, Volume 245, Number 1, Page 119
[14]
Samanta Benítez, Cristian Duarte, Jorge López, Patricio H. Manríquez, Jorge M. Navarro, Cesar C. Bonta, Rodrigo Torres, and Pedro A. Quijón
Marine Pollution Bulletin, 2016, Volume 112, Number 1-2, Page 375
[15]
Binbin Chen, Dinghui Zou, Mingjun Zhu, and Yufeng Yang
Aquaculture Research, 2017, Volume 48, Number 6, Page 2683
[16]
Sepideh Kasiri, Ania Ulrich, and Vinay Prasad
Bioresource Technology, 2015, Volume 194, Page 144
[17]
Concepción Iñiguez, Raquel Carmona, M. Rosario Lorenzo, F. Xavier Niell, Christian Wiencke, and Francisco J. L. Gordillo
Polar Biology, 2016, Volume 39, Number 11, Page 1979
[19]
Sepideh Kasiri, Shana Abdulsalam, Ania Ulrich, and Vinay Prasad
Chemical Engineering Science, 2015, Volume 127, Page 31
[20]
Sepideh Kasiri, Vinay Prasad, and Ania Ulrich
The Canadian Journal of Chemical Engineering, 2015, Volume 93, Number 4, Page 631
[21]
J.A. Raven and J. Beardall
Aquatic Botany, 2014, Volume 118, Page 24
[22]
Giulia Ghedini, Bayden Russell, and Sean Connell
Water, 2013, Volume 5, Number 4, Page 1653
[23]
Lars Gutow, Mohammed Mofizur Rahman, Kevin Bartl, Reinhard Saborowski, Inka Bartsch, and Christian Wiencke
Journal of Experimental Marine Biology and Ecology, 2014, Volume 453, Page 84
[24]
Victor Marco Emmanue N. Ferriol, Crispino A. Saclauso, Norma R. Fortes, Nieves A. Toledo, and Ida G. Pahila
Journal of Fisheries and Aquatic Science, 2013, Volume 8, Number 6, Page 659
[25]
Chang-Peng Ye, Meng-Cheng Zhang, Jian-Gang Zhao, Yu-Feng Yang, and Ya Zuo
International Review of Hydrobiology, 2013, Page n/a
[26]
G. Bellissimo, J. Rull Lluch, A. Tomasello, and S. Calvo
Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 2014, Volume 148, Number 1, Page 21
[27]
Ana Alexandre, João Silva, Pimchanok Buapet, Mats Björk, and Rui Santos
Ecology and Evolution, 2012, Volume 2, Number 10, Page 2625
[28]
Christopher D. G. Harley, Kathryn M. Anderson, Kyle W. Demes, Jennifer P. Jorve, Rebecca L. Kordas, Theraesa A. Coyle, and Michael H. Graham
Journal of Phycology, 2012, Volume 48, Number 5, Page 1064
[29]
John A. Raven and Catriona L. Hurd
Photosynthesis Research, 2012, Volume 113, Number 1-3, Page 105
[30]
Jesús M. Mercado and F. J. L. Gordillo
Photosynthesis Research, 2011, Volume 109, Number 1-3, Page 257
[31]
Sonia Suárez-Álvarez, Juan Luis Gómez-Pinchetti, and Guillermo García-Reina
Journal of Applied Phycology, 2012, Volume 24, Number 4, Page 815

Comments (0)

Please log in or register to comment.
Log in