Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Botanica Croatica

The Journal of University of Zagreb

2 Issues per year

IMPACT FACTOR 2016: 0.516
5-year IMPACT FACTOR: 0.694

CiteScore 2016: 0.79

SCImago Journal Rank (SJR) 2016: 0.269
Source Normalized Impact per Paper (SNIP) 2016: 0.722

Open Access
See all formats and pricing
More options …

Effects of selected groundwater chemical traits on a salt marsh community

Mahmut Kilinç
  • Mayis Faculty of Arts - Sciences, Department of Biology, University of Ondokuz, 55139 Kurupelit-Samsun, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hamdi Kutbay
  • Mayis Faculty of Arts - Sciences, Department of Biology, University of Ondokuz, 55139 Kurupelit-Samsun, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Erkan Yalçin
  • Mayis Faculty of Arts - Sciences, Department of Biology, University of Ondokuz, 55139 Kurupelit-Samsun, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ali Bilgin / Kenan Avci
  • Ministry of Agriculture and Rural Affairs, Soil and Water Resources Research Institute, Samsun, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Solmaz Topaloglu
  • Ministry of Agriculture and Rural Affairs, Soil and Water Resources Research Institute, Samsun, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-03-03 | DOI: https://doi.org/10.2478/v10184-010-0004-7

Effects of selected groundwater chemical traits on a salt marsh community

Electrical conductivity, exchangeable sodium ratio and water depth have negative impacts, whereas soil organic matter concentration has a positive impact on Black Sea salt marsh vegetation. The most saline soils were characterized by Salicornia prostrata vegetation and associated with exchangeable sodium ratio. Alhagi pseudalhagi and Tamarix smrynensis populations were associated with water depth, while Juncus littoralis, Ammophila arenaria and E. paralias were associated with soil organic matter. Euphorbia paralias, Ammophila arenaria and Iris orientalis were associated with acidity.

Keywords: Black Sea; groundwater; salt marsh; vegetation; Black Sea

  • Abd El-Ghani, M. M., 2000a: Floristics and environmental relations in two extreme desert zones of western Egypt. Global Ecology and Biogeography 9, 499-516.Google Scholar

  • Abd El-Ghani, M. M., 2000b: Vegetation composition of Egyptian inland saltmarshes. Botanical Bulletin of Academia Sinica 41, 305-314.Google Scholar

  • Abd El-Ghani, M. M., Amer, W. A., 2003: Soil-vegetation relationships in a coastal desert plain of southern Sinai, Egypt. Journal of Arid Environments 55, 607-628.Google Scholar

  • Abdel-Razik, M. S., Ismail, A. M. A., 1990: Vegetation composition of a maritime salt marsh in Qatar in resltion to edaphic features. Journal of Vegetation Science 1, 85-88.Google Scholar

  • Allen, S. E., Grimshaw, H. M., Parkinson, J. A., Quarmby, C., Roberts, J. D., 1986: Chemical Analysis. In: Chapman, S. B. (ed.), Methods in Plant Ecology, 411-466. Blackwell Scientific Publications, Oxford.Google Scholar

  • Alpar, B., 2009: Vulnerability of Turkish coasts to accelerated sea-level rise. Geomorphology 107, 58-63.CrossrefGoogle Scholar

  • Álvarez-Rogel, J., Martínez-Sánchez, J. J., Blázguez, L. C., Semitiel, M. M., 2006: A Conceptual model of salt marsh plant distribution in coastal dunes of southeastern Spain. Wetlands 26, 703-717.CrossrefGoogle Scholar

  • Álvarez-Rogel, J., Carrasco, L., Marín, C. M., Martínez-Sánchez, J. J., 2007: Soils of a dune coastal salt marsh system in relation to groundwater level, micro-topography and vegetation under a semiarid Mediterranean climate in SE Spain. Catena 69, 111-121.Google Scholar

  • Amezketa, E., De Lersundi, J. V., 2008: Soil classification and salinity mapping for determining restoration potential of cropped riparian areas. Land Degradation and Development 19, 153-164.Google Scholar

  • Apaydin, Z., Kutbay, H. G., Ozbucak, T., Yalcin, E., Bilgin, A, 2009: Relationships between vegetation zonation and edaphic factors in a salt-marsh community (Black Sea Coast). Polish Journal of Ecology 57, 99-112.Google Scholar

  • Arslan, H., Guler, M., Cemek, B., Demir, Y., 2007: Assessment of groundwater quality in Bafra Plain for irrigation. Journal of Tekirdag Agricultural Faculty 4, 219-226.Google Scholar

  • Asri, Y., Ghorbanli, M., 1997: The halophilous vegetation of the Orumieh lake salt marshes NW Iran. Plant Ecology 132, 155-170.Google Scholar

  • Bertness, M. D., Gough, L., Shumway, S. W, 1992: Salt tolerances and distribution of fugitive salt marsh plants. Ecology 73, 1842-1851.CrossrefGoogle Scholar

  • Black, C. A., 1968: Soil-plant relationships. John Wiley and Sons, New York.Google Scholar

  • Bornman, T. G., Adams, J. B., Bate, G. C., 2002: Freshwater requirements of a semi-arid supratidal and floodplain salt marsh. Estuaries 2, 1394-1405.CrossrefGoogle Scholar

  • Bornman, T. G., Adams, J. B., Bate, G. C., 2004: The influence of floodplain geohydrology on the distribution of Sarcocornia pillansii in the Olifants Estuary on the West Coast, South Africa. Journal of Arid Environments 56, 603-625.CrossrefGoogle Scholar

  • Bornman, T. G., Adams, J. B., Bate, G. C., 2008: Environmental factors controlling the vegetation zonation patterns and distribution of vegetation types in the Olifants Estuary, South Africa. South African Journal of Botany 74, 685-695.CrossrefGoogle Scholar

  • Brummitt R.K., Powell, C. E., 1992: Authors of Plant Names. Royal Botanic Garden, Edinburgh.Google Scholar

  • Burchill, C. A., Kenkel, N. C., 1991: Vegetation-environment relationships of an inland boreal salt pan. Canadian Journal of Botany 69, 722-732.Google Scholar

  • Cantero, J. J., Leon, R., Cisneros, J. M., Cantero, A., 1998a: Habitat structure and vegetation relationships in central Argentina salt marsh landscapes. Plant Ecology 137, 79-100.Google Scholar

  • Cantero, J. J., Cisneros, J. M., Zobel, M., Cantero, A., 1998b: Environmental relationships of vegetation patterns in salt marshes of central Argentina. Folia Geobotanica 33, 133-145.Google Scholar

  • Chapman, V. J., 1974: Salt marshes and salt deserts of the world. J. Cramer, Lehre.Google Scholar

  • Cisneros, M., Cantero, J. J., Cantero, A., 1999: Vegetation, soil hydrophysical properties, and grazing relationships in saline-sodic soils of central Argentina. Canadian Journal of Soil Science 79, 399-409.Google Scholar

  • Creasey, C. L., Flegal, A. R., 1999: Elemental analyses of goundwater: demonstrated advantage of low-flow sampling and trace-metal clean techniques over standard techniques. Hydrogeology Journal 7, 161-167.CrossrefGoogle Scholar

  • Davis, P. H., (ed.) 1965-1985: Flora of Turkey and the east Aegean islands, 1-9. Edinburgh University Press, Edinburgh.Google Scholar

  • Davis, P. H., Mill, R., Tan, K., (eds.) 1988: Flora of Turkey and the east Aegean islands, 10 (Supplement). Edinburgh University Press, Edinburgh.Google Scholar

  • Demir, Y., Ersahin, S., Guler, M., Cemek, B., Gunal, H., Arslan, H., 2009: Spatial variability of depth and salinity of groundwater under irrigated ustifluvents in the Middle Black Sea Region of Turkey. Environmental Monitoring and Assessment 158, 279-294.Google Scholar

  • El-Bana, M. I., Al-Mathnani, A, S., 2009: Vegetation-soil relationships in the Wadi Al-Hayat Area of the Libyan Sahara. Australian Journal of Basic and Applied Sciences 3, 740-747.Google Scholar

  • El-Sheikh, M. A., Abadi, G. A., 2004: Biodiversity of plant communities in the Jal Az-Zor National Park, Kuwait. Kuwait Journal of Science and Engineering 31, 77-105.Google Scholar

  • Engin, A., Korkmaz H., 1990. The flora of the district between the body of the dam and Sahinkaya strait (Down Lake Area) and its close environment in the area of Bafra Altinkaya Dam Lake. Proceedings 10 National Biology Congress, Botany Session, Erzurum, 111-120.Google Scholar

  • Faulkner, S. P., Patrick, W. H., Gambrell, R. P., 1989: Field techniques for measuring wetland soil parameters. Soil Science Society of America Journal 53, 883-890.Google Scholar

  • Focht, T., Pillar, V. D., 2003: Spatial patterns and relations with site factors in campos grassland under grazing. Brazilian Journal of Biology 63, 23-436.Google Scholar

  • Hanlon, E. A., 1998: Elemental determination by atomic absorption spectrophotometry. In: Y. P. Kalra (ed.), Handbook of reference methods for the plant analysis, 157-164. CRC Press, Boca Raton.Google Scholar

  • Henderson, P. A., Seaby, R. M. H., 2001: Environmental community analysis 1.33 version. Pisces Conservation Ltd., Lymington.Google Scholar

  • Hussein, A. H., Rabenhorst, M. C., 2001: Tidal inundation of transgressive coastal areas: pedogenesis of salinization and alkalinization. Soil Science Society of American Journal 65, 536-544.CrossrefGoogle Scholar

  • Ihm, B S., Lee, J. S., Kim, J. W., Kim, J. H., 2007: Coastal plant and soil relationships along the southwestern coast of South Korea. Journal of Plant Biology 50, 331-335.CrossrefGoogle Scholar

  • Ji, Y., Zhou, G., New, T. 2009: Abiotic factors influencing the distribution of vegetation in coastal estuary of the Liaohe Delta, northeast China. Northeast China Estuaries and Coasts 32, 937-942.CrossrefGoogle Scholar

  • Jongman, R. H., Terbraak, C. J. F., Tongeren, O. F. R., 1995: Data analysis in community and landscape ecology. Cambridge University Press. Cambridge.Google Scholar

  • Kennish, M. J. 2001: Coastal salt marsh systems in the U. S.: A review of antropogenic impacts. Journal of Coastal Research 17, 731-748.Google Scholar

  • Khaznadar, M., Vogiatzakis, I. N., Griffiths, G. H., 2009: Land degradation and vegetation distribution in Chott El Beida wetland, Algeria. Journal of Arid Environments 73, 369-377.Google Scholar

  • Kilinc, M., Kutbay, H. G., Yalcin, E., Bilgin, A., 2006: Plant ecology and plant sociology practices. Palme Publications, Ankara.Google Scholar

  • Kutbay, H. G., Demir, M., 2001: The changes in nutrient contents of salt marsh species and the importance of edaphic physicochemical factors. Arab Gulf Journal of Scientific Research 19, 35-43.Google Scholar

  • Li Wei-Quiang, Xiao-Jing, L., Khan, M. A., Gul, B., 2008: Relationship between soil characteristics and halophytic vegetation in coastal regions of North China. Pakistan Journal of Botany 40, 1081-1090.Google Scholar

  • Mashaly, I. A., 2001: Contribution to the ecology of the deltaic Mediterranean coast, Egypt. Journal of Biological Sciences 1, 628-635.Google Scholar

  • Mitsch, W. J., Gosselink, J., 1993: Wetlands. Van Nostrand Reinhold, New York.Google Scholar

  • Mueller-Dumbois, D., Ellenberg, H., 1974: Aims and methods of vegetation ecology. Wiley and Sons, New York.Google Scholar

  • Omer, L. St. 2004: Small-scale resource heterogenity among halophytic plant species in an upper salt marsh community. Aquatic Botany 78, 337-448.CrossrefGoogle Scholar

  • Onaindia, M., Amezega, I., 1999: Natural regeneration in salt marshes of northern Spain. Annales Botanici Fennici 36, 59-66.Google Scholar

  • Pennings, S. C., Callaway, R. M., 1992: Salt marsh plant zonation: The relative importance of competition and physical factors. Ecology 73, 681-690.Google Scholar

  • Pennings, S. C., Grant, M. B., Bertness, M. D., 2005: Plant zonation in low-latitude salt marshes: disentangling the roles of flooding, salinity and competition. Journal of Ecology 93, 159-167.Google Scholar

  • Piernik, A., 2003: Inland halophilous vegetation as indicator of soil salinity. Basic and Applied Ecology 4, 525-536.CrossrefGoogle Scholar

  • Salama, H. M. H, Bokhari, N., 2009: Relationship between plant cover type and soil properties on western coastal region, Saudi Arabia. Journal of Applied Sciences Research 5, 1040-1050.Google Scholar

  • Sánchez, J. M., Otero, X. L., Izco, J., 1998: Relationships between vegetation and environmental characteristics in a salt-marsh system on the coast of Northwest Spain. Journal of Vegetation Science 136, 1-8.Google Scholar

  • Shaltout, K. H., Al-Sodany, Y. M., 2008: Vegetation analysis of Burullus Wetland: a Ramsar site in Egypt. Wetlands Ecology and Management 16, 421-439.CrossrefGoogle Scholar

  • Thibodeau, P. M., Gardner, L. R., Reeves, H. W., 1998: The role of groundwater flow in controlling the spatial distribution of soil salinity and rooted macrophytes in a southeastern salt marsh, USA. Mangroves and Salt Marshes 2, 1-13.Google Scholar

  • Van Der Maarel, E., 1979: Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 39, 97-144.Google Scholar

  • Zahran, M. A., Willis, A. J., 2008: The Western Desert. The vegetation of Egypt. Springer.Google Scholar

  • Zhang, J., 1996: Interactive effects of soil nutrients, moisture, and sand burial on the development, physiology, biomass and fitness of Cakile edentula. Annals of Botany 78, 591-598.CrossrefGoogle Scholar

About the article

Published Online: 2011-03-03

Published in Print: 2011-01-01

Citation Information: Acta Botanica Croatica, Volume 70, Issue 1, Pages 41–51, ISSN (Print) 0365-0588, DOI: https://doi.org/10.2478/v10184-010-0004-7.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in