Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Botanica Croatica

The Journal of University of Zagreb

2 Issues per year


IMPACT FACTOR 2016: 0.516
5-year IMPACT FACTOR: 0.694

CiteScore 2016: 0.79

SCImago Journal Rank (SJR) 2016: 0.269
Source Normalized Impact per Paper (SNIP) 2016: 0.722

Open Access
Online
ISSN
0365-0588
See all formats and pricing
More options …

Retention of relict satellite DNA sequences in Anemone (Ranunculaceae)

Višnja Besendorfer
  • Faculty of Science, University of Zagreb, Division of Biology, Department of Molecular Biology, Horvatovac 102a, HR-10000 Zagreb, Croatia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jelena Mlinarec
  • Corresponding author
  • Faculty of Science, University of Zagreb, Division of Biology, Department of Molecular Biology, Horvatovac 102a, HR-10000 Zagreb, Croatia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-04-13 | DOI: https://doi.org/10.2478/v10184-012-0010-z

Abstract

Satellite DNAis a genomic component present in virtually all eukaryotic organisms. The turnover of highly repetitive satellite DNAis an important element in genome organization and evolution in plants. Here we study the presence, physical distribution and abundance of the satellite DNAfamily AhTR1 in Anemone. Twenty-two Anemone accessions were analyzed by PCR to assess the presence of AhTR1, while fluorescence in situ hybridization and Southern hybridization were used to determine the abundance and genomic distribution of AhTR1. The AhTR1 repeat unit was PCR-amplified only in eight phylogenetically related European Anemone taxa of the Anemone section. FISH signal with AhTR1 probe was visible only in A. hortensis and A. pavonina, showing localization of AhTR1 in the regions of interstitial heterochromatin in both species. The absence of a FISH signal in the six other taxa as well as weak signal after Southern hybridization suggest that in these species AhTR1 family appears as relict sequences. Thus, the data presented here support the »library hypothesis« for AhTR1 satellite evolution in Anemone. Similar species-specific satellite DNAprofiles in A. hortensis and A. pavonina support the treatment of A. hortensis and A. pavonina as one species, i.e. A. hortensis s.l.

Keywords : Anemone; FISH; library hypothesis; satellite DNA

  • BAUMBERGER, H., 1970: Chromosomenzahlbestimmungen und karyotypanalysen bei den Gattungen Anemone, Hepatica und Pulsatilla. Berichte der Schweizerischen Botanischen Gesellschaft 80, 17-95.Google Scholar

  • BÖCHNER, T. W., 1945: Meiosis in Anemone apennina with special reference to chiasmata localization. Hereditas 31, 221-231.Google Scholar

  • CSINK, A.,HENIKOFF, S., 1998: Something from nothing: the evolution and utility of satellite repeats. Trends in Genetics 14, 200-204.CrossrefGoogle Scholar

  • DOVER, G.A., 1986: Molecular drive in multigenes families. How biological novelties arise, spread and are assimilated. Trends in Genetics 168, 159-165.CrossrefGoogle Scholar

  • EHRENDORFER, F.,SAMUEL, R., 2001: Contributions to amolecular phylogeny and systematics of Anemone and related genera (Ranunculaceae-Anemoninae). Acta Phytotaxonomica Sinica 39, 293-307.Google Scholar

  • EHRENDORFER, F.,ZIMAN, S. N.,KÖNIG, C.,KEENER, C. S.,DUTTON, B. E.,TSARENKO, O. N., BULAKH, E. V., BOSCAIU, M.,MÉDAIL, F.,KÄSTNER A., 2009: Taxonomic revision, phylogenetics and transcontinental distribution of Anemone section Anemone (Ranunculaceae). Botanical Journal of the Linnean Society 160, 312-354.Web of ScienceCrossrefGoogle Scholar

  • FRY, K., SALSER, W., 1977: Nucleotide sequence of Hs-a satellite DNA from kangaroo rat Dipomys ordii and characterization of similar sequences in other rodents. The Cell 12, 1069-1084.CrossrefGoogle Scholar

  • HAGEMANN, S., SCHEER, B., SCHWEIZER, D., 1993: Repetitive sequences in the genome of Anemone blanda: Identification of tandem arrays and dispersed repeats. Chromosoma 102, 312-324.PubMedCrossrefGoogle Scholar

  • HEIMBURGER,M., 1959: Cytotaxonomic studies in the genus Anemone. Canadian Journal of Botany 37, 587-612.CrossrefGoogle Scholar

  • HOOT, S. B.,REZNICEK, A. A., PALMER, J. D., 1994: Phylogenetic relationships in Anemone (Ranunculaceae) based on morphology and chloroplast DNA. Systematic Botany 19, 169-200.CrossrefGoogle Scholar

  • KIMURA, M., 1980: A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111-120.PubMedCrossrefGoogle Scholar

  • KOUKALOVA, B.,MORAES, A. P.,RENNY-BYFIELD, S.,MATYASEK, R.,LEITCH, A. R.,KOVARIK, A., 2010: Fall and rise of satellite repeats in allopolyploids of Nicotiana over c. 5million years. New Phytologist 186, 148-160.CrossrefWeb of ScienceGoogle Scholar

  • MAÏA, N., VENARD, P., 1976: Contribution a l'étude cytotaxonomique d'espèces Méditerranéennes d'Anemone et de leurs hybrides. Canadian Journal of Genetic and Cytology 18, 151-168.Google Scholar

  • MARKS,G. E., 1974: Giemsa banding of meiotic chromosomes in Anemone blanda L. Chromosoma 49, 113-119.CrossrefGoogle Scholar

  • MARKS, G. E., SCHWEIZER, D., 1974: Giemsa banding: karyotype differences in some species of Anemone and in Hepatica nobilis. Chromosoma 44, 405-416.Google Scholar

  • MÉDAIL, F.,ZIMAN, S.,BOSCAIU,M.,RIERA, J.,LAMBROU,M.,VELA, E.,DUTTON, B.,EHRENDORFER, F., 2002: Comparative analysis of biological and ecological differentiation of Anemone palmata L. (Ranunculaceae) in the western Mediterranean (France and Spain): an assessment of rarity and population persistence. Botanical Journal of the Linnean Society 140, 95-114.CrossrefGoogle Scholar

  • MEŠTROVIČ, N., PLOHL, M., MRAVINAC, B., UGARKOVI], \., 1998: Evolution of satellite DNAs from the genus Palorus-experimental evidence for the »library« hypothesis.Molecular Biology and Evolution 15, 1062-1068.PubMedCrossrefGoogle Scholar

  • MEYER, K. M., HOOT, S. B., ARROYO, M. T. K., 2010: Phylogenetic affinities of South American Anemone (Ranunculaceae) including the endemic segregate genera, Barneoudia and Oreithales. International Journal of Plant Sciences 171, 323-331.Web of ScienceGoogle Scholar

  • MLINAREC, J., CHESTER, M., SILJAK-YAKOVLEV, S., PAPE[, D., BESENDORFER, V., 2009:Molecular structure and chromosome distribution of three repetitive DNA families in Anemone hortensis L. (Ranunculaceae). Chromosome Research 17, 331-343.CrossrefWeb of ScienceGoogle Scholar

  • MLINAREC, J., PAPE[, D.,BESENDORFER, V., 2006: Ribosomal, telomeric and heterochromatin sequences localization in the karyotype of Anemone hortensis. Botanical Journal of the Linnean Society 150, 177-186.Google Scholar

  • MLINAREC, J., [ATOVI], Z.,MALENICA, N., IVAN^I]-BA]E, I., BESENDORFER, V. 2012a: Evolution of the tetraploid Anemone multifida (2n = 32) and hexaploid A. baldensis (2n = 48) (Ranunculaceae) was accompanied by rDNA loci loss and intergenomic translocation: evidence for their common genome origin. Annals of Botany 110, 703-712.Web of ScienceCrossrefGoogle Scholar

  • MLINAREC, J., [ATOVI], Z., MIHELJ, D., MALENICA, N., BESENDORFER, V., 2012b: Cytogenetic and phylogenetic studies of diploid and polyploidmembers of tribeAnemoninae (Ranunculaceae). Plant Biology 14, 525-536.Web of ScienceCrossrefGoogle Scholar

  • QUESADADELBOSQUE, M. E.,NAVAJAS-PEREZ, R., PANERO, J. L., FERNANDEZ-GONZALEZ, A., GARRIDO-RAMOS, 2011: A satellite DNA evolutionary analysis in the North American endemic diocious plant Rumex hastatulus (Polygonaceae). Genome 54, 253-260.CrossrefWeb of ScienceGoogle Scholar

  • ROTHFELS, K.,SEXSMITH, E.,HEIMBURGER,M.,KRAUSE,M.O., 1966: Chromosome size and DNAcontent of species of Anemone and related genera (Ranunculaceae). Chromosoma 20, 54-74.CrossrefGoogle Scholar

  • SAITOU, N.,NEI,M., 1987: The neighbor-joining method: Anew method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406-425.Web of ScienceGoogle Scholar

  • SCHUETTPELZ, E., HOOT, S. B., SAMUEL, R., EHRENDORFER, F., 2002: Multiple origins of Southern hemisphere Anemone (Ranunculaceae) based on plastid and nuclear sequence data. Plant Systematics and Evolution 231, 143-151.Google Scholar

  • SCHWARZACHER, T., HESLOP-HARRISON, J. S., 2000: Practical in situ hybridization. Oxford: Bios.Google Scholar

  • TAMURA, K., PETERSON, D., PETERSON, N., STECHER, G.,NEI, M.,KUMAR, S., 2011:MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 2731-Web of ScienceGoogle Scholar

  • TAMURA,M., 1995: Angiospermae: Ordnung Ranunculales, Fam. Ranunculaceae, Anemoneae. In:HIEPKO, P. (ed.), DieNatürlichen Pflanzenfamilien 17a, 4, 324-349. Duncker and Homblot, Berlin.Google Scholar

  • THOMPSON, J. D.,GIBSON, T. J., PLEWNIAK, F., JEANMOUGIN, F.,HIGGINS, D. G., 1997: CLUSTAL- X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25, 4876-4882.CrossrefPubMedGoogle Scholar

  • UGARKOVIČ, Đ., PLOHL, M., 2002: Variation in satellite DNA profiles-causes and effects. The EMBO Journal 21, 5955-5959.PubMedCrossrefGoogle Scholar

About the article

Published Online: 2013-04-13

Published in Print: 2013-04-01


Citation Information: Acta Botanica Croatica, ISSN (Print) 0365-0588, DOI: https://doi.org/10.2478/v10184-012-0010-z.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Supriyo Basak, Vigya Kesari, Aadi Moolam Ramesh, Latha Rangan, Ajay Parida, and Sudip Mitra
Acta Physiologiae Plantarum, 2017, Volume 39, Number 2
[2]
J. Mlinarec, D. Franjević, J. Harapin, V. Besendorfer, and P. Fransz
Plant Biology, 2016, Volume 18, Number 2, Page 332

Comments (0)

Please log in or register to comment.
Log in