Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Botanica Croatica

The Journal of University of Zagreb

2 Issues per year


IMPACT FACTOR 2016: 0.516
5-year IMPACT FACTOR: 0.694

CiteScore 2016: 0.79

SCImago Journal Rank (SJR) 2016: 0.269
Source Normalized Impact per Paper (SNIP) 2016: 0.722

Open Access
Online
ISSN
0365-0588
See all formats and pricing
More options …

Regulation of growth and some key physiological processes in salt-stressed maize (Zea mays L.) plants by exogenous application of asparagine and glycerol

Cengiz Kaya
  • Corresponding author
  • Harran University, Agriculture Faculty, Soil Science and Plant Nutrition Department, Sanliurfa, Turkey
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Salih Aydemir
  • Harran University, Agriculture Faculty, Soil Science and Plant Nutrition Department, Sanliurfa, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Osman Sonmez
  • Harran University, Agriculture Faculty, Soil Science and Plant Nutrition Department, Sanliurfa, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Muhammed Ashraf / Murat Dikilitas
Published Online: 2013-04-13 | DOI: https://doi.org/10.2478/v10184-012-0012-x

Abstract

Maize seedlings were subjected to concentrations of 0 and 100mMof NaCl in Hoagland’s nutrient solution medium in plastic pots containing perlite. Two levels of asparagine (5 and 10 mM) and glycerol (20 and 40 mM) were sprayed onto the leaves of maize seedlings 10 days after germination. Saline stress caused considerable decline in total dry mass, chlorophyll content and relativewater content in the maize plants. It increased the activities of superoxide dismutase, catalase and polyphenol oxidase as well as electrolyte leakage, but did not alter the activity of non-specific peroxidise. Foliar application of asparagine or glycerol was found to be effective in checking shoot growth inhibition under NaCl stress. Exogenously applied asparagine or glycerol reduced superoxide dismutase, non-specific peroxidase and polyphenol oxidase activities in salt-stressed maize plants compared to those not treated with these organic compounds. Salinity increased Na+ contents but reduced those of K+, Ca2+ and P in the roots of the used genotype of maize. Foliar application of asparagine or glycerol increased the contents of K+, Ca2+ and P, but it reduced that of Na+ in salt-stressed maize plants as compared to those of the salt-stressed plants not supplied with glycerol or asparagine. Glycerol was more effective than asparagine in improving salinity tolerance of maize plants in terms of growth and physiological attributes measured in the present study

Keywords : asparagine; corn; glycerol; maize; salinity tolerance

  • AGARWAL, S., PANDEY, V., 2004: Antioxidant enzyme responses to NaCl stress in Cassiaangustifolia. Biologia Plantarum 48, 555-560.CrossrefGoogle Scholar

  • ALBERT, R., POPP,M., 1977: Chemical composition of halophytes from the Neusiedler Lake region in Austria. Oecologia Plantarum 27, 157-170.CrossrefGoogle Scholar

  • ALBERTYN, J., HOHMANN, S., THEVELEIN, J. M., PRIOR, B. A., 1994: GPD1, which encodes glycerol-3 phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Molecular cell biology 14, 4135-4144.Google Scholar

  • ALI, R. M., ELFEKY, S. S.,ABBAS, H., 2008: Response of salt-stressed Ricinus communis L: to exogenous application of glycerol and/or aspartic acid. Journal of Biological Sciences 8, 171-175.Google Scholar

  • ASHRAF, M., 2009: Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances 27, 84-93.PubMedCrossrefGoogle Scholar

  • ASHRAF, M.,ALI, Q., 2008: Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). Environmental and Experimental Botany 63, 266-273.Google Scholar

  • ASHRAF, M.,HARRIS, P. J. C., 2004: Potential biochemical indicators of salinity tolerance in plants. Plant Science 166, 3-16.Google Scholar

  • ASHRAF,M.,ATHAR, H. R.,HARRIS, P. J. C.,KWON, T. R., 2008: Some prospective strategies for improving crop salt tolerance. Advances in Agronomy 97, 45-110.CrossrefGoogle Scholar

  • ASHRAF, M., FOOLAD, M. R., 2007: Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany 59, 206-216.Google Scholar

  • BARRS, H. D.,WEATHERLEY, P. E., 1962:Are-examination of the relative turgidity technique for estimating water deficits in leaves. Australian Journal of Biology Sciences 15, 413-428.Google Scholar

  • BATES, L. S.,WALDREN, R. P., TEARE, I. D., 1973: Rapid determination of free proline for water stress studies. Plant and Soil 39, 205-207.CrossrefGoogle Scholar

  • BEAUCHAMP, C., FRIDOVICH, I. 1971: Superoxide dismutase: Improved assays and an assay applicable to acryl- amide gels. Analytical Biochemistry 44, 276-287.CrossrefGoogle Scholar

  • BRADFORD, M. M., 1976: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248-254.Google Scholar

  • BROUQUISSE, R., JAMES, F., PRADET, A.,RAYMOND, P., 1992: Asparagine metabolism and nitrogen distribution during protein degradation in sugar-starved maize root tips. Planta 188, 384-395.Google Scholar

  • BROWN, A. D., 1990: Microbial water stress physiology, principles and perspectives. John Wiley & Sons, New York.Google Scholar

  • CHAFFEI, C., PAGEAU, K., SUZUKI, A.,GOUIA, H.,GHORBEL, M. H.,MASCLAUX-DAUBRESSE, C., 2004: Cadmium toxicity induced changes in nitrogen management in Lycopersiconesculentum leading to a metabolic safeguard through an amino acid storage strategy. Plant Physiology 45, 1681-1693.Google Scholar

  • CHANCE, M.,MAEHLY, A. C., 1955: Assay of catalases and peroxidases. Methods of Enzymology 2, 764-817.Google Scholar

  • CHAPMAN, H. D., PRATT, P. F., 1982: Methods of plant analysis. I. Methods of analysis for soils, plants and water. Chapman Publishers, Riverside, CA CHEESEMAN, J.M., 1988:Mechanismof salt tolerance in plants. Plant Physiology 87, 547-550.Google Scholar

  • COLMER, T. D.,EPSTEIN, E.,DVORAK, J., 1995: Differential solute regulation in leaf blades of various ages in salt sensitive wheat and a salt-tolerant wheat x Lophopyrum elongatum (Host.) A. Love amphiploid. Plant Physiology 108, 1715-1724.Google Scholar

  • COURCHESNE, W. E., VLASEK, C., KLUKOVICH, R., COFFEE, S., 2011: Ethanol induces calcium influx via the Cch1-Mid1 transporter in Saccharomyces cerevisiae. Archives of Microbiology 193, 323-334.Google Scholar

  • CUSHMAN, J. C.,DEROCHER, E. J.,BOHNERT, H. J., 1990: Gene expression during adaptation to salt stress. In: KATERMAN, F. J., (ed.) Environmental injury to plants. 173-203. Academic press, New York.Google Scholar

  • DAVIES, K. J. A., 1987: Protein damage and degradation by oxygen radicals, 1. General aspects. Journal of Biological Chemistry 262, 9895-9901.Google Scholar

  • DEMIR, Y.,KOCALISKAN, I., 2001: Effects of NaCl and proline on polyphenol oxidase activity in bean seedlings. Biologia Plantarum 44, 607-609.CrossrefGoogle Scholar

  • DIONISIO-SESE, M. L., TOBITA, S., 1998: Antioxidant responses of rice seedlings to salinity stress. Plant Science 135, 1-9.Google Scholar

  • FERREIRA, C.,VOORST, F. V.,NEVES, A. M. L.,OLIVEIRA, R.,KIELLAND-BRANDT, M. C.,LUCAS, C., BRANDT, A., 2005. Amember of the sugar transporter family, Stl1p is the glycerol/H+ symporter in Saccharomyses cerevisiae.Molecular Biology of the Cell 16, 2068-2076.Google Scholar

  • FOUGÈRE, F., LE RUDULIER, D.,STREETER, J.G., 1991: Effects of salt stress on amino acid, organic acid, and carbohydrate composition of roots, bacteroids, and cytosol of alfalfa (Medicago sativa L.). Plant Physiology 96, 1228-1236.Google Scholar

  • GREENWAY, H.,MUNNS, R., 1980: Mechanisms of salt tolerance in nonhalophytes. Annual Review of Plant Physiology 312, 149-190.Google Scholar

  • HERRERA-RODRIGUEZ, M. B., PEREZ-VICENTE, R.,MALDONADO, J. M., 2007: Expression of asparagine synthetase genes in sunflower (Helianthus annuus) under various environmental stresses. Plant Physiology and Biochemistry 45, 33-38.CrossrefGoogle Scholar

  • JAGER, H. J.,MEYER, H. R., 1977: Effect of water stress on growth and proline metabolism of Phaseolus vulgaris L. Oecologia 30, 83-96.CrossrefGoogle Scholar

  • KRAUS, T. E., AUSTIN-FLETCHER, R. A., 1994: Paclobutrazol protects wheat seedlings from heat and paraquat injury: is detoxification of active oxygen involved? Plant and Cell Physiology 35, 45-52.Google Scholar

  • LÄUCHLI, A.,GRATTAN, S. R., 2007: Plant growth and development under salinity stress. In: JENKS, M. A.,HASEGAWA, P. M., JAIN, S. M. (eds.), Advances in molecular breeding toward drought and salt tolerant crops, 1-32. Springer.Google Scholar

  • LEA, P. J., SODEK, L., PARRY, M. A. J., SHEWRY, P. R.,HALFORD, N. G., 2007: Asparagine in plants. Annual in Applied Biology 150, 1-126.Google Scholar

  • LIN, C. C., KAO, C. H., 1995: NaCl stress in rice seedlings: effects of L-proline, glycinebetaine, L- and D-asparagine on seedling growth. Biologia Plantarum 37, 305-308.Google Scholar

  • LIU, D. Z., LIN, Y. S.,HOU, W. C., 2004: Monohydroxamates of aspartic acid and glutamic acid exhibit antioxidant and angiotensin converting enzyme inhibitory activities. Journal of Agricultural and Food Chemistry 52, 2386-2390.CrossrefGoogle Scholar

  • MANSOUR, M. M. F., 2013: Plasma membrane permeability as an indicator of salt tolerance in plants. Biologia Plantarum. In press.Google Scholar

  • MARTINELLI, T.,ANNE, W.,ADRIANA, B.,CONCETTA, V.,AKIRA, S.,CELINE,M., 2007: Amino acid pattern and glutamate metabolism during dehydration stress in the resurrection’ plant Sporobolus stapfianus: a comparison between desiccation-sensitive and desiccation tolerant leaves. Journal of Experimental Botany 58, 3037-3046.Google Scholar

  • MAAROUFI-DGUIMI, H.,DEBOUBA, M.,GAUFICHON, L.,CLÉMENT, G.,GOUIA, H.,HAJJAJI, A., SUZUKI, A., 2011: An Arabidopsis mutant disrupted in ASN2 encoding asparagine synthetase 2 exhibits low salt stress tolerance. Plant Physiology and Biochemistry 49, 623-628.Google Scholar

  • RABE, E., 1990: Stress physiology: the functional significance of the accumulation of nitrogen- containing compounds. Journal of Horticultural Science 65, 231-243.Google Scholar

  • SAIRAM, R. K., RAO K. V., SRIVASTAVA, G. C., 2002: Differential response of wheat genotypes to long-term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science 163, 1037-1046.Google Scholar

  • SCHEIN, C. H., 1990: Solubility as a function of protein structure and solvent components.PubMedGoogle Scholar

  • Biotechnology 8, 308-317.Google Scholar

  • SHEN, B.,HOHMANN, S., JENSEN, J. G., BOHNERT, H. J., 1999: Roles of sugar alcohols in osmotic stress adaptation. Replacement of glycerol by mannitol and sorbitol in yeast. Plant Physiology 121, 45-52.Google Scholar

  • SHEVELEVA, E., CHMARA, W., BOHNERT, H. J., JENSEN, R. G., 1997: Increased salt and drought tolerance by D-ononitol production in transgenic Nicotiana tabacum L. Plant Physiology 115, 1211-1219.Google Scholar

  • SIECIECHOWICZ, K. A., JOY, K. W., IRELAND, R. J., 1988: The metabolism of asparagine in plants. Phytochemistry 27, 663-671.CrossrefGoogle Scholar

  • SMIRNOFF, N., CUMBES, Q. J., 1989: Hydroxyl radical scavenging of compatible solutes. Phytochemistry 28, 1057-1060.CrossrefGoogle Scholar

  • STEWART, G. R., LARHER, F., 1980: Accumulation of amino acids and related compounds in relation to environmental stress. In: MIFLIN, B. J. (ed.), The biochemistry of plants, 609-635. Academic Press, New York.Google Scholar

  • STOOP, J. M. H.,WILLIAMSON, J. D., PHARR, D.M., 1996:Mannitol metabolism in plants: A method for coping with stress. Trends in Plant Science 1, 139-144.Google Scholar

  • STOREY, R.,WYN JONES, R. G., 1977: Quaternary ammonium compounds in plants in relation to salt stress. Phytochemistry 16, 447-453.CrossrefGoogle Scholar

  • STRAIN, H. H.,SVEC,W.A., 1966: Extraction, separation, estimation and isolation of chlorophylls. In: VERNON, L. P., SEELY, S. R. (eds), The chlorophylls, 21-66. Academic Press, New York.Google Scholar

  • SULIEMAN, S., FISCHINGER, S. A., GRESSHOFF, P. M., 2010: Asparagine as a major factor in the N-feedback regulation of N2 fixation in Medicago truncatula. Physiologia Plantarum 140, 21-31.Google Scholar

  • THOMAS, J. C., DE ARMOND, R. L.,BOHNERT, H. J., 1992: Influence of NaCl on growth, proline and phosphoenolpyruvate carboxylase levels in Mesembrythemum crystallinum suspension cultures. Plant Physiology 98, 926-931.Google Scholar

  • WILLIAMS, D. C.,LIM,M. H.,CHEN, A. O.,PANGBORN, R.M.,WHITAKER, J. R., 1986: Blanching of vegetables for freezing-which indicator enzyme to choose. Food Technology 40, 130-140.Google Scholar

  • YAMAGUCHI, T., BLUMDWALD, E., 2005: Developing salt-tolerant crop plants: Challenges and opportunities. Trends in Plant Science 12, 615-620.CrossrefGoogle Scholar

  • ZAUBERMAN, Z.,ROREN, R.,AKERMAN, I.,WEKSLER, A., FUCH, Y., 1991: Post harvest retention of the red color of litchi fruit pericarp. Scientia Horticulturae 47, 89-97.Google Scholar

About the article

Published Online: 2013-04-13

Published in Print: 2013-04-01


Citation Information: Acta Botanica Croatica, ISSN (Print) 0365-0588, DOI: https://doi.org/10.2478/v10184-012-0012-x.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in