Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Botanica Croatica

The Journal of University of Zagreb

2 Issues per year

IMPACT FACTOR 2016: 0.516
5-year IMPACT FACTOR: 0.694

CiteScore 2016: 0.79

SCImago Journal Rank (SJR) 2016: 0.269
Source Normalized Impact per Paper (SNIP) 2016: 0.722

Open Access
See all formats and pricing
More options …

Chlorophyll content, photosynthetic efficiency and genetic markers in two sour cherry (Prunus cerasus L.) genotypes under drought stress

Marija Viljevac / Krunoslav Dugalić / Ines Mihaljević / Domagoj Šimić / Rezica Sudar / Zorica Jurković
  • Agricultural Institute Osijek, Južno predgrađe 17, HR-31000 Osijek, Croatia
  • Croatian Food Agency, I. Gundulića 36b, HR-31000 Osijek, Croatia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hrvoje Lepeduš
  • Faculty of Humanities and Social Sciences, J.J. Strossmayer University of Osijek, L. Jägera 9, HR-31000 Osijek, Croatia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-10-08 | DOI: https://doi.org/10.2478/botcro-2013-0003


- Drought is a limiting factor in fruit production today. Identification of sour cherry genotypes tolerant to drought will enable the sustainability of fruit production. The aim of our study was to select sour cherry genotypes according to their genetic background as well as drought tolerance and investigate possible mechanisms of drought tolerance through the changes in photosynthetic apparatus (i.e. photosynthetic pigment content) and photosynthesis process assessed through the chlorophyll fluorescence transient. All of them together with molecular markers (SSRs and AFLPs), relative water content (RWC) as indicator of plant water status distinguish two genotypes (Kelleris 16 and OS), which are the opposite in regards to drought tolerance. Down-regulation of photosynthesis in drought-treated Kelleris 16 plants was seen as changes in antenna complexes of PSII (decreased total chlorophylls content (a+b) and chlorophylls ratio (a/b)). Despite unchanged maximum quantum yield of PSII in drought-treated leaves of genotype OS, overall photosynthetic performance expressed as PIABS was down-regulated in both investigated genotypes. However, decrement of PIABS was much pronounced in genotype Kelleris 16, mainly because of changes in a certain fraction of RCs, which become dissipative centres, seen as increase in ABS/RC and DI0/RC, in order to avoid photooxidative damage of photosynthetic apparatus. Also, electron transport, seen as decrease in ET0/(TR0-ET0) and ET0/RC, was impaired which lead to impaired CO2 fixation and photosynthesis. The described changes in the functioning of photosynthetic apparatus in drought-treated plants of Kelleris 16 constitute the main distinction between the two investigated genotypes regarding drought adaptation mechanisms.

Keywords : chlorophyll fluorescence; drought tolerance; genetic variability; leaf water content; photosynthetic pigments; Prunus cerasus; sour cherry

  • ABDALLA, M. M.,EL-KHOSHIBAN, N. H., 2007: The influence of water stress on growth, relative water content, photosynthetic pigments, some metabolic and hormonal contents of two Triticum aestivum genotypes. Journal of Applied Sciences Research 3, 2062-2074.Google Scholar

  • ANTONIUS, K., AALTONEN, M., UOSUKAINEN, M., HURME, T., 2012: Genotypic and phenotypic diversity in Finnish cultivated sour cherry (Prunus cerasus L.). Genetic Resources and Crop Evolution 59, 375-388.CrossrefWeb of ScienceGoogle Scholar

  • APPENROTH, K.-J., STÖCKEL, J., SRIVASTAVA, A., STRASSER, R. J., 2001: Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements. Environmental Pollution 115, 49-64.CrossrefGoogle Scholar

  • BAUERLE, W. L., DUDULEY, J. B., GRIMES, L. W., 2003: Genotypic variability in photosynthesis, water use, and light absorption among red and Freeman maple genotypes in response to drought stress. Journal of American Society for Horticultural Science 128, 337-342.Google Scholar

  • BERTAMINI, M., ZULINI, L., ZORER, R., MUTHUCHELIAN, K., NEDUNCHEZHIAN, N., 2007: Photoinhibition of photosynthesis in water deficit leaves of grapevine (Vitis vinifera L.) plants. Photosynthetica 45, 426-432.CrossrefGoogle Scholar

  • BOLHÁR-NORDENKAMPF, H. R., LONG, S. P., BAKER, N. R., ÖUQUIST, G., SCHREIBER, U., LECHNER, E. G., 1989: Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: AReview of Current Instrumentation. Functional Ecology 3, 497-514.CrossrefGoogle Scholar

  • CANTINI, C., IEZZONI, A. F., LAMBOY, W. F., BORITZKI, M., STRUSS, D., 2001: DNA fingerprinting of tetraploid cherry germplasm using simple sequence repeats. Journal of the American Society for Horticultural Science 126, 205-209.Google Scholar

  • CESAR, V., ŠTOLFA, I.,MAUROVI], S., PARAĐIKOVIĆ, N., LEPEDUŠ, H., 2008: Differential appearance of vacuolar polyphenols in Black pine (Pinus nigra) needles in response to the lowering of SO2 in the air. Acta Botanica Hungarica 50, 326-335.Google Scholar

  • CHRISTEN, D.,SCHÖNMANN, S., JERMINI,M.,STRASSER, R. J.,DFAGO,G., 2007: Characterisation and early detection of grapevine (Vitis vinifera) stress responses to esca disease by in situ chlorophyll fluorescence and comparison with drought stress. Environmental and Experimental Botany 60, 504-514. Web of ScienceCrossrefGoogle Scholar

  • CLARKE, J. B., TOBUTT, K. R., 2003: Development and characterisation of polymorphic microsatellites from Prunus avium »Napoleon«.Molecular Ecology Notes 3, 578-580.CrossrefGoogle Scholar

  • CLAVEL, D.,DIOUF, O.,KHALFAOUI, J. L.,BRACONNIER, S., 2006: Genotypes variation in fluorescence parameters among closely related groundnut (Arachis hypogaea L.) lines and their potential for drought screening programs. Field Crop Research 96, 296-306.CrossrefGoogle Scholar

  • CRITCHLEY, C., 2000: Photoinhibition. In: RAGHAVENDRA, A. S. (ed.), Photosynthesis: a comprehensive treatise, 264-272. Cambridge University Press, Cambridge.Google Scholar

  • DICE, L. R., 1945: Measures and amount of ecologic association between species. Ecology 26, 297-302.CrossrefGoogle Scholar

  • DIRLEWANGER, E., COSSON, P., TAVAUD, M., ARANZANA, M. J., POIZAT, C., ZANETTO, A., ARÚS, P., LAIGRET, F., 2002: Development of microsatellite markers in peach [Prunuspersica (L.) Batsch] and their use in genetic analysis in peach and sweet cherry (Prunusavium L.). Theoretical and Applied Genetics 105, 127-138.Google Scholar

  • DOYLE, J. J., DOYLE, J. L., 1987: Isolation of plant DNA from fresh tissue. Phytochemical Bulletin 19, 11.Google Scholar

  • FAO STATISTICAL DATABASES, 2011: Food and Agriculture Organisation of the United Nations, Rome, Italy.Google Scholar

  • FORCE, L.,CRITCHLEY, C., VANRENSEN, J. S., 2003: New fluorescence parameters for monitoring photosynthesis in plants. Photosynthesis Research 78, 17-23.PubMedCrossrefGoogle Scholar

  • HASSANZADEH, M., EBADI, A., PANAHYAN-E-KIVI, M., ESHGHI, A. G., JAMAATI-E-SOMARIN, S., SAEIDI, M.,ZABIHI-E-MAHMOODABAD, R., 2009: Evaluation of drought stress on relative water content and chlorophyll content of sesame (Sesamum indicum L.) genotypes at early flowering stage. Research Journal of Environmental Sciences 3, 345-350.CrossrefGoogle Scholar

  • HORMAZA, J. I., 2002: Molecular characterization and similarity relationships among apricot (Prunus armeniaca L.) genotypes using simple sequence repeats. Theoretical and Applied Genetics 104, 321-328.CrossrefGoogle Scholar

  • JALEEL, C. A., MANIVANNAN, P., WAHIDI, A., FEROOQ, M., JASIM AL-JUBURI, H., SOMASUNDARAM, R., PANNERSELVAM, R., 2009: Drought stress in plants: a review on morphological characteristics and pigments composition. International Journal of Agriculture and Biology 11, 100-105.Google Scholar

  • KAÇAR, Y. A., CETINER, M. S., CANTINI, C., IEZZONI, A. F., 2006: Simple sequence repeat (SSR) markers differentiate Turkish sour cherry germplasm. Journal of American Pomological Society 60, 136-143.Google Scholar

  • KAUSER, R.,ATHAR, H.-U.-R., ASHRAF,M., 2006: Chlorophyll fluorescence: a potential indicator for rapid assessment of water stress tolerance in canola (Brassica napus L.). Pakistan Journal of Botany 38, 1501-1509.Google Scholar

  • KHAKWANI, A. A.,DENNETT,M. D.,MUNIR,M., 2011: Drought tolerance screening of wheat varieties by inducing water stress conditions. Songklanakarin Journal of Science and Technology 33, 135-142.Google Scholar

  • KRALL, J. P., EDWARDS, G. E., 1992: Relationship between photosystem II activity and CO2 fixation in leaves. Physiologia Plantarum 86, 180-187. Google Scholar

  • KRICHEN, L.,BOURGUIBA, H.,AUDERGON, J. C., TRIFI-FARAH, N., 2010: Comparative analysis of genetic diversity in Tunisian apricot germplasm using AFLP and SSR marker. Scientia Horticulturae 127, 54-63.Web of ScienceGoogle Scholar

  • LEPEDUŠ, H., TOMAŠIĆ, A., JURIĆ, S., KATANIĆ, Z., CESAR, V., FULGOSI, H., 2009: Photochemistry of PSII in CYP38 Arabidopsis thaliana deletion mutation. Food Technology and Biotechnology 47, 275-280.Google Scholar

  • LICHTENTHALER, H. K., 1987: Chlorophyll and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology 148, 350-382.Google Scholar

  • LIN, Z.-H., CHEN, L.-S., CHEN, R.-B., ZHANG, F.-Z., JIANG, H.-X., TANG, N., 2009: CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, carbohydrates and photosynthetic electron transport probed by the JIP-test, of tea leaves in response to phosphorus supply. BMC Biology 9, 43.Web of ScienceGoogle Scholar

  • MANTEL, N., 1967: The detection of disease clustering and a generalized regression approach.Cancer Research 27, 209-220.PubMedGoogle Scholar

  • MAXWELL, K., JOHNSON, G. N., 2000: Chlorophyll fluorescence - a practical guide. Journal of Experimental Botany 51, 659-662.CrossrefPubMedGoogle Scholar

  • NUSSBAUM, S., GEISMANN, M., EGGENBERG, P., STRASSER, R. J., FUHRER, J., 2001: Ozone sensitivity in herbaceous species as assessed by direct and modulated chlorophyll fluorescence techniques. Journal of Plant Physiology 158, 757-766.Google Scholar

  • OMAE, H., KUMAR, A., KASHIWABA, K., SHONO, M., 2007: Assessing drought tolerance of snap bean (Phaseolus vulgaris) from genotypic differences in leaf water relations, shoot growth and photosynthetic parameters. Plant Production Science 10, 28-35.Web of ScienceCrossrefGoogle Scholar

  • PEDERSEN B. H., 2006:DNAfingerprints of 51 sweet and sour Prunus accessions using simple sequence repeats. Journal of Horticultural Science and Biotechnology 81, 118-124.Google Scholar

  • PEDISIĆ, S.,DRAGOVIĆ-UZELAC, V.,LEVAJ, B., ŠKEVIN, D., 2010: Effect of maturity and geographical region on anthocyanin content of sour cherries (Prunus cerasus var. marasca). Food Technology and Biotechnology 48, 86-93.Google Scholar

  • PUŠKAR, B., 2005: Intravarietal variabilty of Oblačinska cherry (In Croatian). PhD. Thesis, University of Zagreb.Google Scholar

  • RAMPINO, P., PATALEO, S., GERARDI, C., GIOVANNI, M., PERROTTA, C., 2006: Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes. Plant Cell and Environment 29, 2143-2152.CrossrefGoogle Scholar

  • ROSALES-SERNA, R., KOHASHI-SHIBATA, ACOSTA-GALLEGOS, J. A., TREJO-LÓPEZ, C., ORTIZ-CERECERES, J.,KELLY, J. D., 2004: Biomass distribution, maturity acceleration and yield in drought stress common bean genotypes. Field Crops Research 85, 203-211.CrossrefGoogle Scholar

  • SÁNCHEZ-RODRÍGUEZ, E., RUBIO-WILHELMI, M., CERVILLA, L. M., BLASCO, B., RIOS, J. J., ROSALES, M. A.,ROMERO, L.,RUIZ, J.M., 2010: Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Science 178, 30-40.Web of ScienceGoogle Scholar

  • STRASSER, R. J., SRIVASTAVA, A.,TSIMILLI-MICHAEL,M., 2000: The fluorescent transient as a tool to characterise and screen photosynthetic samples. In: YUNUS, M., PATHRE, U., MOHANTY, P., (eds.), Probing photosynthesis: mechanisms, regulation and adaptation, 445-483. Taylor and Francis, London. STRASSER, R. J.,SRIVASTAVA, A.,TSIMILLI-MICHAEL,M., 2004: Analysis of chlorophyll a fluorescence transient. In: PAPAGEORGIOU, G. C.,GOVINDJEE (eds.), Chlorophyll a fluorescence: A signature of photosynthesis. Advances in Photosynthesis and Respiration 19, 321-362. Kluwer Academic Publishers, Rotterdam.Google Scholar

  • TAVAUD, M., ZANETO, A., DAVID, J. L., LAIGRET, F., DIRLEWANGER, E., 2004: Genetic relationship between diploid and allotetraploid cherry species (Prunus avium, Prunus×gondouinii and Prunus cerasus). Heredity 93, 631-638.CrossrefGoogle Scholar

  • VANHEERDEN, P. D. R.,SWANEPOEL, J.W.,KRÜGER, G. H. J., 2007:Modulation of photosynthesis by drought in two desert scrub species exhibiting C3-mode CO2 assimilation. Environmental and Experimental Botany 61, 124-136.Web of ScienceGoogle Scholar

  • VENTURI, S.,DONDINI, L.,DONINI, P., SANSAVINI, S., 2006: Retrotransposon characterisation and fingerprinting of apple clones by S-SAP markers. Theoretical and Applied Genetics 112, 440-444.CrossrefGoogle Scholar

  • VOS, P.,HOGERS, R., BLEEKER, M., REIJANS, M., VAN DE LEE, T.,HORNES, M., FRIJTERS, A., POT, J., PELEMAN, J., KUIPER, M., ZABEAU, M., 1995: AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23, 4407-4414.CrossrefPubMedGoogle Scholar

  • ZHOU, L.,KAPPEL, F.,HAMPSON, C.,WIERSMA, P. A.,BAKKEREN, G., 2002: Genetic analysis and discrimination of sweet cherry genotypes and selection using amplified fragment length polymorphism fingerprints. Journal of the American Society for Horticultural Science 127, 786-792. ŽIVĆÁK, M., BRESTIĆ, M.,OLŠOVSKÁ, K., SLAMKA, P., 2008: Performance index as a sensitive indicator of water stress in Triticum aestivum L. Plant Soil and Environment 54, 133-139. Google Scholar

About the article

Published Online: 2013-10-08

Published in Print: 2013-10-01

Citation Information: Acta Botanica Croatica, Volume 72, Issue 2, Pages 221–235, ISSN (Print) 0365-0588, DOI: https://doi.org/10.2478/botcro-2013-0003.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in