Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Botanica Croatica

The Journal of University of Zagreb

2 Issues per year

IMPACT FACTOR 2016: 0.516
5-year IMPACT FACTOR: 0.694

CiteScore 2016: 0.79

SCImago Journal Rank (SJR) 2016: 0.269
Source Normalized Impact per Paper (SNIP) 2016: 0.722

Open Access
See all formats and pricing
More options …

Proline enhances antioxidative enzyme activity, photosynthesis and yield of Cicer arietinum L. exposed to cadmium stress

Shamsul Hayat
  • Corresponding author
  • Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
  • Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202 002, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Qaiser Hayat
  • Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202 002, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mohammed Nasser Alyemeni / Aqil Ahmad
Published Online: 2013-10-08 | DOI: https://doi.org/10.2478/v10184-012-0019-3


Seeds of chickpea inoculated with Rhizobium were sown in pots supplemented with different doses of cadmium (0, 25, 50 or 100 mg per kg of soil). At the stage of 30 days after sowing (DAS), the plants were sprayed with 20 mM solution of proline and were sampled at 90 DAS to assess the various parameters. The foliar treatment of proline resulted in the alleviation of the adverse effects generated by metal exposure, which was expressed in terms of the increase in plant growth. The activity of carbonic anhydrase in the cadmium-fed plants sprayed with proline was higher than that of control. The proline applied as foliar spray increased the photosynthetic attributes and yield characteristics in the cadmium-stressed plants. The activity of antioxidative enzymes increased with increasing concentration of cadmium. Maximum values were recorded in the plants exposed to 100 mg cadmium per kg of soil.

Keywords : antioxidative enzymes; cadmium stress; Cicer arietinum; growth; photosynthesis; proline; yield

  • ASHRAF, M., FOOLAD, M. R., 2007: Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany 59, 206-216.Web of ScienceGoogle Scholar

  • BALESTRASSE, K. B.,GALLEGO, S.M.,TOMARO,M. L., 2004: Cadmium-induced senescence in nodules of soybean (Glycine max L.) plants. Plant and Soil 262, 373-381.Google Scholar

  • BARCELO, J., POSCHENRIEDER, C., 1990: Plant water relations as affected by heavy metal stress: a review. Journal of Plant Nutrition 13, 1-37.CrossrefGoogle Scholar

  • BATES, L. S.,WALDEN, R. T., TEARSE, I. D., 1973: Rapid determination of free proline for water stress studies. Plant and Soil 39, 205-207.CrossrefGoogle Scholar

  • BEAUCHAMP, L. O., FRIDOVICH, I., 1971: Superoxide dismutase: improved assays and assay applicable to acrylamide gels. Annals of Biochemistry 44, 276-287.CrossrefGoogle Scholar

  • CHANCE, B.,MAEHLY, A. C., 1956: Assay of catalase and peroxidase. Methods in Enzymology 2, 764-775.Google Scholar

  • CLELAND, R. E., 1999: Nature, cocurrence and fucntion of plant hormones. In: HOOYKAAS, P. J. J., HALL, M. A., LIBBENGA, K. R., (Eds.), Biochemistry and molecular biology of plant hormones, 33, 322. Elsevier, Amsterdam.Google Scholar

  • DWIVEDI, R. S., RANDHAWA, N. S., 1974: Evaluation of a rapid test of the hidden hunger of zinc in plants. Plant and Soil 40, 445-451.CrossrefGoogle Scholar

  • GADALLAH, M. A. A., 1995: Effects of cadmium and kinetin on chlorophyll content, saccharides and dry matter accumulation in sunflower plants. Biologia Plantarum 37, 233-240.Google Scholar

  • HAMILTON, E. W.,HECKATHORN, S. A., 2001: Mitochondrial adaptation to NaCI. Complex I is protected by anti-oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. Plant Physiology 126, 1266-1274.Google Scholar

  • HARE, P. D.,CRESS,W. A., 1997: Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regulation 21, 79-102.Google Scholar

  • HASAN, S. A.,HAYAT, S.,ALI, B.,AHMAD, A., 2008: 28-homobrassinolide protects chickpea (Cicer arietinum) from cadmium toxicity by stimulating antioxidants. Environmental Pollution 151, 60-66.Web of ScienceGoogle Scholar

  • HASAN, S. A.,FARIDUDDIN, Q.,ALI, B.,HAYAT, S.,AHMAD, A., 2009: Cadmium: toxicity and tolerance in plants. Journal of Environmental Biology 30, 165-174.Google Scholar

  • HAYAT, S., AHMAD, A., MOBIN, M., FARIDUDDIN, Q., AZAM, Z. M., 2001: Carbonic anhydrase, photosynthesis and seed yield in mustard plants treated with phytohormones. Photosynthetica 39, 111-114.Google Scholar

  • HAYAT, S., HAYAT, Q., 2011: Role of proline and salicylic acid in overcoming the stress of cadmium: Chickpea (Cicer arietinum). Lambert Academic Publishing, Germany.Google Scholar

  • HAYAT, S.,HAYAT, Q.,ALYEMENI, M. N.,WANI, A. S., PICHTEL, J.,AHMAD, A., 2012: Role of proline under changing environments:A Review. Plant Signaling and Behavior 7, 1-11.Google Scholar

  • HOLMSTROM, K. O., SOMERSALO, S.,MANDAL, A., PALVA, T. E.,WELIN, B., 2000: Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. Journal of Experimental Botany 51, 177-185.Google Scholar

  • HOQUE, M. A., BANU, M. N. A., OKUMA, E., AMAKO, K., NAKAMURA, Y., SHIMOISHI, Y., MURATA, Y., 2007: Exogenous proline and glycine betaine increase NaCl-induced ascorbate-glutathione cycle enzyme activities, and proline improves salt tolerance more than glycine betaine in tobacco Bright Yellow-2 suspension cultured cells. Journal of Plant Physiology 164, 1457-1468.Web of ScienceGoogle Scholar

  • ISLAM,M.M.,HOQUE,M. A.,EIJI, O.,BANU,M. N. A.,YASUAKI, S.,YOSHIMASA, N.,YOSHIYUKI, M., 2009: Exogenous proline and glycine betaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. Journal of Plant Physiology 166, 1587-1597.Google Scholar

  • KIM, H. J., BRACEY, M. H., BARLETT, S. G., 1994: Nucleotide sequence of a gene encoding carbonic anhydrase in Arabidopsis thaliana. Plant Physiology 105, 449-450.Google Scholar

  • KWOK, D., SHETTY, K., 1998: Effects of proline and proline analogs on total phenolic and rosmarinic acid levels in shoot clones of thyme (Thymus vulgaris L.). Journal of Food Biochemistry 22, 37-51.CrossrefGoogle Scholar

  • LOWRY, O. H., ROSENBROUGH, N. J., FARR, A. L., RANDALL, R. J., 1951: Protein measurement with folin phenol reagent. Journal of Biological Chemistry 193, 265-275.Google Scholar

  • MAKELA, P.,KARKKAINEN, J., SOMERSALO, S., 2000: Effect of gycine betaine on chloroplast ultrastructure, chlorophyll and protein content, and RuBPCO activities in tomato grown under drought or salinity. Biologia Plantarum 43, 471-475. Google Scholar

  • OKUMA, E., MURAKAMI, Y., SHIMOISHI, Y., TADA, M., MURATA, Y., 2004: Effects of exogenous application of proline and betaine on the growth of tobacco cultured cells under saline conditions. Soil Science and Plant Nutrition 50, 1301-1305.Google Scholar

  • PALEG, L. G., DOUGHLAS, T. J., VAN DAAL, A., KEECH, D. B., 1981: Proline and betaine protect enzymes against heat inactivation. Australian Journal of Plant Physiology 8, 107-114.Google Scholar

  • REDDY, M. P., VORA, A. B., 1986: Changes in pigment composition, Hill reaction activity and saccharide metabolism in bajra (Pennisetum typhoides S. et H.) leaves under NaCl salinity. Photosynthetica 20, 50-55.Google Scholar

  • ROYALS, J.,WORD, E., AHL-GOY, P.,METRAUX, J.P. 1992. In: WARAY, J. L. (ed.), Inducible plant proteins, 205-229. Cambridge University Press, Cambridge.Google Scholar

  • SCHNEIDER, E. A,WHITMAN, F., 1974: Metabolism of auxin in higher plants. Annual Review of Plant Physiology 25, 487-513.Web of ScienceGoogle Scholar

  • SRINIVAS, V., BALASUBRAMANIAN, D., 1995: Proline is a protein-compatible hydrotrope. Langmuir 11, 2830-2833.Google Scholar

  • SZABADOS, L., SAVOURE, A., 2009: Proline: a multifunctional amino acid. Trends in Plant Science 15, 89-97.Web of ScienceGoogle Scholar

  • TIWARI, A., KUMAR, P., SINGH, S., ANSARI, S. A., 2005: Carbonic anhydrase in relation to higher plants. Photosynthetica 43, 1-9.CrossrefGoogle Scholar

  • THOMPSON,W. F.,WHITE, J. J., 1991: Physiological and molecular studies on light regulated nuclear genes in higher plants. Annual Review of Plant Physiology and PlantMolecular Biology 42, 423-466.Google Scholar

  • YANG, S. L., LAN, S. S., GONG, M., 2009: Hydrogen peroxide-induced proline and metabolic pathway of its accumulation in maize seedlings. Journal of Plant Physiology 166, 1694-1699.Web of ScienceGoogle Scholar

  • ZHOU, Y. O.,HUANG, S. Z.,YU, S. L.,GU, J. G., ZHAO, J. Z.,HAN, Y. L., FU, J. J., 2010: The physiological response and sub-cellular localization of lead and cadmium in Iris pseudacorus L. Ecotoxicology 19, 69-76. Web of ScienceGoogle Scholar

About the article

Published Online: 2013-10-08

Published in Print: 2013-10-01

Citation Information: Acta Botanica Croatica, Volume 72, Issue 2, Pages 323–335, ISSN (Print) 0365-0588, DOI: https://doi.org/10.2478/v10184-012-0019-3.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Rashad Mukhtar Balal, Muhammad Adnan Shahid, Muhammad Mansoor Javaid, Muhammad Akbar Anjum, Hafiz Haider Ali, Neil Scott Mattson, and Francisco Garcia-Sanchez
Brazilian Journal of Botany, 2016, Volume 39, Number 2, Page 453
Abolghassem Emamverdian, Yulong Ding, Farzad Mokhberdoran, and Yinfeng Xie
The Scientific World Journal, 2015, Volume 2015, Page 1

Comments (0)

Please log in or register to comment.
Log in