Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Botanica Croatica

The Journal of University of Zagreb

2 Issues per year


IMPACT FACTOR 2016: 0.516
5-year IMPACT FACTOR: 0.694

CiteScore 2016: 0.79

SCImago Journal Rank (SJR) 2016: 0.269
Source Normalized Impact per Paper (SNIP) 2016: 0.722

Open Access
Online
ISSN
0365-0588
See all formats and pricing
More options …

Interactions between leaf macronutrients, micronutrients and soil properties in pistachio (Pistacia vera L.) orchards

Prodromos Koukoulakis / Christos Chatzissavvidis
  • Corresponding author
  • Democritus University of Thrace, Department of Agricultural Development, Pantazidou 193, Orestiada 68200, Greece
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aristotelis Papadopoulos / Dimitrios Pontikis
Published Online: 2013-10-08 | DOI: https://doi.org/10.2478/v10184-012-0021-9

Abstract

- The interactions between: (i) leaf dry matter macronutrietns, micronutrients and soil chemical properties, (ii) leaf macro- and micronutrients, (iii) soil macro- and micronutrients and (iv) soil chemical properties, and soil micro- and macronutrients in 50 pistachio orchards were investigated in leaves and soils by means of regression analysis. Most of the soils were deficient in plant-available P, Zn, Mn, Fe, and B, while they were excessively supplied with Cu. Leaf analysis showed that most of the trees were sufficient in K, Mg, Mn and B, but deficient in N, P and Fe, and excessive in Zn and Cu. It was found that almost all the significant elemental interactions occurring in pistachio leaves or soils were synergistic, contributing considerable quantities of available nutrients and, therefore, improving the nutrient status of pistachio trees, and the level of soil fertility. On the other hand, the interactions between K and Mg in leaves, and between soil pH and leaf N or soil Fe, Mn and B, were antagonistic. It is suggested that these results must be taken into account during fertilization of pistachio trees, in order to avoid nutritional disorders and to promote plant growth, productivity and nut quality.

Keywords: Pistacia vera; plant nutrition; leaf; macronutrients; micronutrients; soil

  • ALVA, A. K.,HUANG, B., PRAKASH, O., PARAMASIVAM, S., 1999: Effects of copper rates and soil pH on growth and nutrient uptake by citrus seedlings. Journal of Plant Nutrition 22, 1687-1699.CrossrefGoogle Scholar

  • ARNON, I., 1975: Mineral nutrition of maize. International Potash Institute, Bern, Switzerland.Google Scholar

  • BASLAR, S.,DOGAN, Y.,MERT,H.H., 1999: Studies on the ecology of Pistacia terebinthus L. subsp. palaestina (Boiss.) Engler in West Anatolia. Journal of the Faculty of Science, Ege University 22, 1-12.Google Scholar

  • BOUJOUCOS, G. J., 1962: Hydrometer method improved for making particle size analysis of soils. Journal of Agronomy 54, 464-465.Google Scholar

  • BRADY, N. C,WEIL,R.R., 2002: The nature and properties of soils. PrenticeHall, N.J., USA.Google Scholar

  • CHAPMAN, H. D., PRATT, P. F., 1961: Methods of analysis for soils, plants and waters. Division of Agricultural Sciences, University of California, Riverside, USA.Google Scholar

  • CRANE, J. C.,MARANTO, J., 1988: Pistachio production. Cooperative Extension University of California, Division of Agricultural and Natural Resources. Publication 2279, Oakland, CA.Google Scholar

  • DIBB, D. W., THOMPSON, Jr. W. R., 1985: Interaction of potassium with other nutrients. In: MUNSON, R. D. (ed.), Potassium in agriculture, 515-533. SSSA, Madison, Wisconsin.Google Scholar

  • DOGAN, Y.,BASLAR, S.,AYDIN, H.,MERT, H., 2003: Astudy of the soil-plant interactions of Pistacia lentiscus L. distributed in the western Anatolian part of Turkey. Acta Botanica Croatica 62, 73-88.Google Scholar

  • FAO (Food and Agriculture Organization), 2008. Retrieved September 5, 2012, from http://faostat.fao.org.Google Scholar

  • FAGERIA, N. K., ZIMMERMANN, F. J. P.,BALIGAR, V. C., 1995: Lime and phosphorus interactions on growth and nutrient uptake by upland rice, wheat, common bean, and corn in an oxisol. Journal of Plant Nutrition 18, 2519-2532.CrossrefGoogle Scholar

  • GIORDANO, P. M.,NOGGLE, J. C.,MORTVENDT, J. J., 1974: Zinc uptake by rice as affected by metabolic inhibitors and competing cations. Plant Soil 41, 637-646.CrossrefGoogle Scholar

  • HALDAR, M.,MANDAL, L. N., 1981: Effect of phosphorus and zinc on the growth and phosphorus, zinc, copper, iron and manganese nutrition of rice. Plant Soil 59, 415-425.CrossrefGoogle Scholar

  • HEWITT, E. J., 1983: The essential and functional mineral elements. In: ROBINSON, J. B. D., BOULD, C.,HEWITT, E. J.,NEEDHAM, P. (eds.), Diagnosis of mineral disorders in plants, vol 1, 7-53. Her Majesty’s Stationary Office, London, UK.Google Scholar

  • HODGSON, J. F., LINDSAY, W. L., TRIERWEILER, J. F., 1966: Micronutrient cation complexing in soil solution. II. Complexing of zinc and copper in displacing solution from calcareous soils. Soil Science Society of America Proceedings 30, 723-726.CrossrefGoogle Scholar

  • JACKSON, M. L., 1958: Soil chemical analysis. Prentice Hall Inc., Englewood Cliffs, N.J., USA.Google Scholar

  • KALAVROUZIOTIS, I. K., KOUKOULAKIS, P. H., 2009a: Environmental implications of soil properties and essential nutrient interactions, under the effect of treated municipal wastewater. Water Air Soil Pollution 197, 267-276.Google Scholar

  • KALAVROUZIOTIS, I. K., KOUKOULAKIS, P. H., 2009b: Distribution of elemental interactions in Brussels sprout plants, under the treated municipal wastewater. Journal of Plant Interactions 4(3), 219-231.Google Scholar

  • KALAVROUZIOTIS, I. K.,KOUKOULAKIS, P. H.,ROBOLAS, P., PAPADOPOULOS, A. H., PANTAZIS, V., 2008: Macro- and micronutrient interactions in soil under the effect of Brassicaoleracea var Italica, irrigated with treated municipal wastewater. Fresenius Environmental Bulletin 17, 1-15. Google Scholar

  • KALAVROUZIOTIS, I. K.,KOUKOULAKIS, P. H., SAKELLARIOU-MAKRANTONAKI, M., PAPANIKOLAOU, C., 2009: Effects of treated municipal wastewater on the essential nutrients interactions in the plant of Brassica oleracea var Italica. Desalination 242, 297-312.Google Scholar

  • KALAVROUZIOTIS, I. K.,KOUKOULAKIS, P. H.,MEHRA, A., 2010: Quantification of elemental interactions effects on Brussels sprouts under treated municipal wastewater. Desalination 254, 6-11.Web of ScienceGoogle Scholar

  • KAUSAR, M. A., CHAUDHARY, F. M., RASHID, A., LATIF, A., ALAM, S. M., 1976: Micronutrient availability to cereals from calcareous soils. I. Comparative Zn and Cu deficiency and their mutual interaction in rice and wheat. Plant Soil 45, 397-410.CrossrefGoogle Scholar

  • KIZILGOZ, I.,KIZILKAYA, R.,ACAR, I.,KAPTAN, H., 2001: Nutrient contents of pistachio trees (Pistacia vera L.) growing in district of Sanliurfa and the relationship between their microelement deficiency and some soil properties. Cahiers Options Méditerranéennes 56, 47-52.Google Scholar

  • KOUKOULAKIS, P., 1995: Principles of rational fertilization of crops (in Greek). Agriculture and Husbandry 9, 43-61.Google Scholar

  • KOUKOULAKIS, P. H.,SIMONIS, A. D.,BLADENOPOULOU, S., 1988: Potassium-magnesium antagonism in tomato and cucumber, grown in plastic greenhouse. Proceedings of Athens Academy 63, 130-139.Google Scholar

  • KOUKOULAKIS, P. C., SIMONIS, A. D., GERTSIS, A., 2000: The organic matter in soils. The problem of Greek soils (in Greek). Stamoulis Publications, Athens.Google Scholar

  • LINDSAY,W. L., 1991: Inorganic equilibria affecting micronutrients in soil. In:MORTDVEDT, J. J.,GIORDANO,M.,LINDSAY,W. C. (eds.), Micronutrients in agriculture, 90-111. SSSA, Madison, Wisconsin, USA.Google Scholar

  • MENGEL, K., KIRKBY, E. A., 1987: Principles of plant nutrition. International Potash Institute, Berne, Switzerland.Google Scholar

  • MERHAUT, D. J., 2007: Magnesium. In: BARKER, A. V., PILBEAM, D. J. (eds.), Handbook of plant nutrition, 146-181. CRC Press, Boca Raton, FL, USA.Google Scholar

  • MILLS, H. A., BENTON JONES Jr, J., 1996: Plant analysis handbook. MicroMacro Publishing Inc., Athens, USA.Google Scholar

  • OLSEN, S. R., 1972: Micronutrient interactions. In: MORTDVEDT, J. J., GIORDANO, M., LINDSAY,W. C. (eds.), Micronutrients in agriculture, 243-264. SSSA. Madison,Wisconsin, USA.Google Scholar

  • SONMEZ, S.,KAPLAN, M., SOMNEZ, N. K.,KAYA, H.,UZ, I., 2007: Effect of both soil copper applications and foliar copper application frequencies on macronutrients contents of tomato plants. Asian Journal of Chemistry 19, 5372-5384.Google Scholar

  • SRIVASTAVA, P. C.,GUPTA, U. C., 1996: Trace elements in crop production. Science Publishers Inc., Lebanon, USA.Google Scholar

  • STEVENSON, F. J., COLE, M. A., 1999: Cycles of soil. Carbon, nitrogen, phosphorus, sulfur, micronutrients. John Wiley and Sons Inc., New York, USA.Google Scholar

  • TISDALE, S. L.,NELSON, W. L.,BEATON, J. D.,HAVLIN, J. L., 1993: Soil fertility and fertilizers. MacMillan Publishing Co, New York, USA. Google Scholar

  • WOLF, B., 1971: The determination of boron in soil extracts, plant materials, composts, manures, water and nutrient solutions. Communications in Soil Science and Plant Analysis 2, 363-374. CrossrefGoogle Scholar

About the article

Published Online: 2013-10-08

Published in Print: 2013-10-01


Citation Information: Acta Botanica Croatica, ISSN (Print) 0365-0588, DOI: https://doi.org/10.2478/v10184-012-0021-9.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in